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Abstract
This paper describes a promising sleepiness detection ap-
proach based on prosodic and spectral speech characteristics 
and illustrates the validity of this method by briefly discussing 
results from a sleep deprivation study (N=20). We conducted a 
within-subject sleep deprivation design (8.00 p.m to 4.00 a.m). 
During the night of sleep deprivation, a standardized self-
report scale was used every hour just before the recordings to 
determine the sleepiness state. The speech material consisted 
of simulated driver assistance system phrases. In order to in-
vestigate sleepiness induced speech changes, a standard set of 
spectral and prosodic features were extracted from the sen-
tences. After forward selection and a PCA were employed on 
the feature space in an attempt to prune redundant dimensions, 
LDA- and ANN-based classification models were trained. The 
best level-0 model (RA15, LDA) offers a mean accuracy rate 
of 80.0% for the two-class problem. Using an ensemble classi-
fication strategy (majority voting as meta-classifier) we 
achieved a accuracy rate of 88.2%. 

Index Terms: spectral features, sleepiness detection, driver 
assistance system, ensemble classification 

1. Introduction 
Measuring sleepiness has been recognized as an important 
factor for the prevention of a broad range of traffic accidents 
[9, 10, 20, 25, 28]. Hence, many efforts have been reported in 
the literature for developing real-time sleepiness detection 
systems. These systems mainly focus on visual information 
such as (a) instability of pupil size [26], eye blinking [2, 3, 4], 
eyelid movement [25], and saccade eye movement [12, 29] as 
well as (b) gross body movement, head movement, manner-
ism, and facial expression in order to characterize a driver’s 
state of alertness [22]. In this paper we describe a spectral and 
prosodic approach to measure sleepiness. Our attention is 
focused particularly on the influence of sleepiness on driver 
assistance communication. The rest of this paper is organized 
as follows: Section 2 describes sleepiness related changes in
speech. Section 3 discusses the sleep deprivation design and 
acoustic features used. The results of an ANN classifier are 
provided in Section 4, discussion and conclusions are given in 
Section 5.

2. Sleepiness and Speech Changes 
Sleepiness related physiological changes can influence voice 
characteristics according to the following stages of speech 
production [13, 14, 16]:  

(a) cognitive speech planning: reduced cognitive processing 
speed  impaired speech planning and impaired neuromuscu-
lar motor coordination processes  slowed articulator move-
ment  slackened articulation and slowed speech 

(b) respiration: decreased muscle tension  flat and slow 
respiration  reduced subglottal pressure  lower fundamen-
tal frequency, intensity, articulatory precision, and rate of 
articulation 

(c) phonation: decreased muscle tension  increased vocal 
fold elasticity and decreased vocal fold tension; decreased 
body temperature  changed viscoelasticity of vocal folds 

(d) articulation/ resonance: decreased muscle tension  un-
constricted pharynx and softening of vocal tract walls  en-
ergy loss; postural changes  lowered upper body and low-
ered head  changed vocal tract shape; increased salivation
energy loss; decreased body temperature  reduced heat con-
duction, changed friction between vocal tract walls and air, 
changed laminar flows (  energy loss)  shift in the spectral 
energy distribution, broader formant bandwidth, increase in 
formant frequencies especially in lower formants 

(e) radiation: decreased orofacial movement, facial expres-
sion, and lip spreading (“relaxed open mouth display”) [8, 
21]  shortening of the vocal tract  lower F1 and F2 fre-
quencies; reduction of articulatorical effort  smaller opening 
degree  slackened articulation  decreased first formant; 
oropharyngeal relaxation  increased nasality. 

However, little empirical research has been done to examine 
the effect of sleepiness on acoustic voice characteristics. Most 
studies [24, 6] have analyzed only prosody cues (i.e., intensity, 
speech rate, and F0), whereas segmental cues (e.g. coded by  
MFCC’s) have received little attention [5, 11, 14]. The aim of 
this study is to introduce a sleepiness detection method based 
on spectral and prosodic features in order to answer the ques-
tions: Can sleepiness be described quantitatively by parame-
ters derived from segmental acoustic analysis?

3. Method

3.1. Procedure
Twenty-three students, recruited from the University of Wup-
pertal (Germany), took part in this study voluntarily. Initial 
screening excluded those having sleep disorders or sleep diffi-
culties (PSQI). The participants were instructed to maintain 
their normal sleep pattern and behaviour. Due to recording and 
communication problems, the data of the 6 participants could 
not be analyzed. 
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We conducted a within-subject sleep deprivation design (8.00 
p.m to 4.00 a.m). During the night of sleep deprivation a well 
proved, standardised, self-report sleepiness measure, Stanford 
Sleepiness Scale (SSS) [7] was used every hour just before the 
recordings to determine the sleepiness state. On this scale, a 
score of 1 point indicates “feeling active and vital, alert, wide 
awake” and a score of 7 points indicates “almost in reverie, 
sleep onset soon, losing struggle to remain awake”. The two 
most sleepy and the two most alert SSS measurements were 
included in the analysis. During the night, the subjects were 
confined to the laboratory and supervised throughout the 
whole period. Between sessions, they remained in a room, 
watched DVD, and talked. Non caffeinated beverages and 
snacks were available ad libitum.

3.2. Speech Material and Recording 
The recording took place in a laboratory room with dampened 
acoustics using a high-quality, clip-on microphone (sampling 
rate: 44.1 kHz, 16 bit). The input level of the sound recording 
was kept constant throughout the recordings. Furthermore the 
subjects were given sufficient prior practice so that they were 
not uncomfortable with this procedure. The verbal material 
consisted of a German phrase, in form of a statement: “Ich 
suche die Friesenstraße“ [“I´m searching for the Friesen 
Street”]. The sentence was taken from simulated communica-
tion with a driver assistance system. The participants recorded 
other verbal material at the same session, but in this article we 
focus on the material described above [17 subjects x 4 sen-
tences = 68 speech samples]. For training and classification 
purposes the records were further divided in two classes: 
sleepy (SS) and not sleepy (NSS) with the boundary value 
SSS  5. (46 samples NSS, 22 samples SS) 

3.3. Feature Extraction  
All acoustic measurements were taken sentence wise using the 
Praat speech analysis software [1]. Formant processing (F1- 
F5) was done with Praat, using a pre-emphasis filter with fre-
quency response of 25 ms hamming window and 10 ms step 
size. For our study we estimated the following types of fea-
tures:

prosodic features (26): Fundamental frequency, intensity 
and other types of supra-segmental information such as jitter 
and shimmer were calculated. In particular, we computed the 
functionals: mean, 2.-4 quartile, standard deviation, maximum, 
minimum, range, positions and values of maxima and minima. 
Finally, we considered jitter and shimmer, short-term fluctua-
tions in energy and fundamental frequency.  

spectral features I (107): Frequencies, bandwidths, and 
amplitudes of the F1-F5 formants, and the frequencies and 
amplitudes of the first 2 harmonics. Moreover, we calculated, 
4 Hammarberg indices and the average LTAS spectrum on 6 
frequency bands (125-200 Hz, 200-300 Hz, 500-600 Hz, 
1000-1600 Hz, 5000-8000 Hz) [16], proportion of low fre-
quency energy under 500Hz/1000Hz, the slope of spectral 
energy above 1000 Hz, the Harmonic-to-Noise ratio (HNR), 
and spectral tilt features (“open quotient”, “glottal opening”, 
“skewness of glottal pulse”, and “rate of glottal closure”) [19].  

spectral features II (36): the usual 36 MFCC features (12 
MFCC, 12 MFCC, 12 MFCC). To calculate these coeffi-
cients, we average the frame-wise computed mel-cepstral co-
efficients and 12 time differences over the entire signal. We 
expect these coefficients to account for specific properties of 
the sleepy speech such as increased nasalization. 

3.4. Feature Selection 
The purpose of feature selection is to reduce the dimensional-
ity, which can otherwise hurt the performance of the pattern 
classifiers. The small amount of data also suggested that 
longer vectors would not be advantageous due to overlearning 
of data. In this study, we used stepwise linear regression 
method (forward selection). The threshold for adding a feature 
was set so that 10 (resp. 15 or 20) best features were selected 
(RA10, RA15, and RA20). In addition we employed Principal 
Component Analysis for feature selection. The first 10 (resp. 
15 or 20) dimensions were extracted (PCA10, PCA15, and 
PCA20).

3.5. Classification  
For the classification we used a multilayer perceptron, a spe-
cial kind of artificial neural network (ANN) and a simple lin-
ear classifier (LDA). Because ANNs, specifically multi-layer 
perceptrons (MLPs), have proved useful for research in emo-
tion recognition from speech, this classifier was chosen and 
computed with Matlab software. We used a feedforward net 
with backpropagation learning algorithm (one hidden layer, 5 
nodes). We divided the data into training and test sets built 
from 34 and 34 sentences, respectively. The test set contains 
only speakers unseen in the training set. In the following ex-
periments, all the classification errors were calculated by a 
twofold cross-validation. Using a two-fold cross-validation 
reduces effort and, at the same time, secures strict speaker 
independence. The training data was divided into two disjoint 
sets of equal size, and classifiers were trained twice, each time 
with a different set held out as a test set. The final classifica-
tion errors were calculated averaging over the two test data 
sets. In addition to this procedure we applied an ensemble 
classification strategy including level-0 classifier results (see 
Table 1) using a majority voting as meta-classifier [27].  

4. Results
We tried three different feature set sizes (10, 15, and 20) and 
two selection methods (linear regression based forward selec-
tion regression and PCA) to classify sleepy vs. non sleepy 
speech. For all configurations we trained the classifier and 
tested them on the test sets. The averaged accuracy rates (ratio 
correctly classified samples through all samples) of two dif-
ferent classifiers, ANN and LDA, for the two class problems 
are shown in Table 1.  
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Table 1: Accuracy rates (in %) on the test set using 
different feature set size (10, 15, and 20 feature), dif-
ferent feature set selection method (stepwise linear re-
gression analysis or principal component analysis) 
and different classifier (linear discriminant analysis or 
artifical neural net). 

 RA PCA 

LDA 10 70.6 75.7 

15 80.0 76.4 

20 75.0 67.7 

ANN 10 76.4 58.8 

15 79.4 76.4 

20 70.6 53.0 

Within the best 20 features the following numbers of features 
were included: 2 prosodic, 7 spectral I, and 11 spectral II fea-
ture (MFCCs). The best results were achieved with the RA15 
feature set with LDA classifier (80.0%) and the RA15 feature 
set with ANN classifier (79.4%). Ensemble generalization was 
proposed for a classification task by combining multiple mod-
els. To maximize the classification accuracy one should use 
ensemble classification rather than any single classifier by 
itself. In contrast to stacking strategy we use the output of 
different feature subsets rather than different classifier as 
level-1 features. The majority voting was selected as meta 
classification rule. The speech sample was classified as sleepy 
if the propotion of the level-0 classifier output predicted as 
sleepy was larger than 33.3%. 

Table 2: Accuracy rates (in %) using different ensem-
ble classification strategies for LDA: aggregation of 
different feature set sizes (10, 15, 20) and selection 
methods (RA, PCA). 

RA PCA 

Voting (10,15,20) 85.3 76.4
Voting RA+PCA (10,15,20) 88.2

Voting RA+PCA 10 85.3

Voting RA+PCA 15 85.3

Voting RA+PCA 20 88.2

Table 2 shows the performance comparison between different 
level-0 feature sets. The combination of all 6 level-0 classifier 
feature sets (RA10, RA15, RA20, FA10, FA15, FA20) per-
form best (recognition rate 88.2%). A more detailed look on 
the best classification result is presented in Table 3, where the 
confusion matrix is depicted. The proportion of correct classi-
fied sleepy speech is 72.7% (detection rate). On the other hand 
4.3% false alarm errors can be found. The kappa coefficient 
which thought to be the chance corrected prediction accuracy 
is .72 [kappa=0.88- 0.57)/ (1-0.57)].

Table 3: Confusion matrix on the test set using the vot-
ing meta classifier with 6 LDA-based level-0 feature 
sets. [SS = sleepy and NSS = not sleepy]. 

Hypothesis
Reference NSS SS 

NSS 44 (95.7%) 2 (4.3%) 
SS 6 (27.3%) 16 (72.7%) 

5. Discussion
A crucial aim of this study was to explore whether voice fea-
tures are associated with sleepiness. The main findings of the 
present study may be summarised as follows. First, prosodic 
and spectral features extracted from driver assistance system 
communication contain a different amount of information 
about sleepiness states. Within the best 20 features 2 prosodic, 
and 18 spectral features were selected by the forward selec-
tion. Secondly, in our experiments on a two-class classifica-
tion problem (sleepy vs. non sleepy speech), we achieved a 
accuracy rate of 80.0% on unseen data. The best recognition 
performance is attained for a 15 feature set using a LDA clas-
sifier. Thirdly the ensemble classification strategy (majority 
votings as meta classifier) using the output of the level-0 clas-
sifier offered a recognition rate of 88.2%. The accuracy rate 
increased in comparison to the best level-0 classifier by 8.2%. 
From the confusion matrix it is evident that the meta classifier 
perfoms with a detection rate of 72.7% and a false alarm rate 
of 4.3%.  

Due to the hypothezised sleepiness related physiological 
changes in cognitive speech planning, respiration, phonation, 
articulation, and radiation, the results for the reported classifi-
cation performance were largely as could be expected. This is 
consistent with previous sleepiness related findings, that sug-
gest an association of prosodic [24, 6] and spectral characteris-
tics [5, 11, 14] with sleepiness.  

Limitations. There are some limitations of this study. First, the 
applied self-report measures have been criticized because of 
their cognitive and motivational drawbacks. Therefore further 
studies should try to replicate the results with behavioural, 
physiological and performance sleepiness instruments. Sec-
ondly, sleepiness might be confounded by annoyance states 
due to the multiple repetition of speak task. Thus the results 
obtained in the current study with a within subject design 
should be replicated with a between subject design. Thirdly, 
our results are limited by the facts that we did not consider 
real life speaking conditions including variation in  speakers´ 
states (having a headcold, drinking milk, being nervous, ag-
gressive or in a depressive mood), variations in speakers´ trait 
(strong dialect, older age), and variations in situational context 
factors (high driving related work-load situation, noisy envi-
roments). These confounders might influence the detection 
rate and the false alarm error rate of the sleepiness measure-
ment. Furthermore the analysis assumes a closely placed mi-
crophone and noise-free recordings of short sentences. How-
ever, it is not realistic to expect such a clean audio input, espe-
cially not in unconstrained traffic environments in which 
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automatic sleepiness detection systems are most likely to be 
deployed.  

Future work. Granted, the present results are preliminary and 
need to be replicated using natural speech enviroment. Never-
theless, it would seem advisable that future studies address the 
following topics:  

segmentation: finding sleepiness sensitive phonetical 
units (phones or VCV in different word and phrasal unit 
position)
feature extraction: computing of rhythm and duration re-
lated features; time-domain based features from nonlinear 
time series analysis (lyapunov exponents, correlation di-
mension, automutual information, time resolved density, 
fractal dimensions, multiscale entropies, and recurrence 
quantification analysis [23]); using automatic feature 
generation
pattern classification: dividing between male and female 
classification models; utilizing SVMs, maximum-
likelihood bayes classifiers, kNNs, fuzzy membership in-
dexing,  ANNs, HMMs, gaussian mixture density mod-
els; using sophisticated ensemble classification methods 
(boosting, stacking) [17].
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