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Abstract

Background: Quantitative neural models of speech acquisition and speech
processing are rare.

Methods: In this paper, we describe a neural model for simulating speech acquisition,
speech production, and speech perception. The model is based on two important
neural features: associative learning and self-organization. The model describes an
SOM-based approach to speech acquisition, i.e. how speech knowledge and speaking
skills are learned and stored in the context of self-organizing maps (SOMs).

Results: The model elucidates that phonetic features, such as high-low, front-back in
the case of vowels, place and manner or articulation in the case of consonants and
stressed vs. unstressed for syllables, result from the ordering of syllabic states at the level
of a supramodal phonetic self-organizing map. After learning, the speech production
and speech perception of speech items results from the co-activation of neural states
within different cognitive and sensorimotor neural maps.

Conclusion: This quantitative model gives an intuitive understanding of basic
neurobiological principles from the viewpoint of speech acquisition and speech
processing.
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Background
While a great deal of research has been carried out in order to investigate brain lo-

cations of different parts or modules which comprise the speech production and

speech perception system (e.g. [1-3]), little is known about the neural functioning of

these modules during speech acquisition, speech production, and speech percep-

tion. In order to fill this gap, quantitative functional neural models have been devel-

oped (e.g. [4-8]).

One model, the neuroanatomically grounded Hebbian-learning model [8], establishes

highly specialized functional units called “Hebbian neuronal circuits” (HNCs, see also

[9]). This model appears to be especially neurobiologically realistic since it learns to as-

sociate sensory and motor speech items in a similar way to the early phases of speech

acquisition in children. In order to maintain balance between neurobiological realism
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and computational tractability, this approach does not model single neurons and spike

chains, but rather uses “cells” or “nodes” as basic neuron-like elements which represent

a local set of neurons, and thus it realizes a lumped-type or mean-field type model in

which the primary objects of modeling are the average activity rate of the neuron set

(or cell) and cell exhibitory and inhibitory connectivity.

Self-organizing map approaches (SOM, Kohonen) belong to the group of lumped

element rate based approaches as well, but it should be noted that the degree of ab-

straction is much higher in SOM models than in models such as the neuroanatomically

grounded Hebbian-learning model of [8]. On the other hand, SOM approaches – as

well as more neuroantomically grounded approaches – are capable of representing the

basic principles of neural systems, i.e. self-organization, associative learning, Hebbian

learning, adaptation, and neural plasticity.

Quantitative neural models of speech processing (i.e. speech production and speech

perception) and speech acquisition which include the generation and/or perceptual

processing of articulatory and acoustic speech signals are rare. One of the most cited

approaches in this direction is the DIVA model [7,10,11]. The DIVA approach mainly

concentrates on modeling the relationship between sensory feedback and speech articu-

lation. That model has been successfully applied e.g. to exemplifying motor adaptation

in speech production [7,10,12]. The approach introduced in the present paper concen-

trates on the questions of how speech knowledge, including knowledge concerning

speech motor skills, is learned and how this knowledge is stored. In contrast, no as-

sumptions concerning knowledge or skill storage are given in the DIVA approach.

Thus, the goal of the present paper is to introduce a comprehensive model of speech

acquisition, speech production, and speech perception, based on SOM theory, which

includes knowledge and skill storage.
Methods
Structure of the model

Biologically-based neural models that describes complex behavior or complex human

functions, such as speaking, separate functional structure and knowledge [13]. The

functional structure of such a system is basically composed of neural maps and neural

mappings [7].

A neural map is an assembly of model neurons which represents a specific neural

state, i.e. a phonemic, phonetic, motor plan, or sensory state in the case of our model-

ing approach. These maps are located in specific cortical regions. A neural map, e.g.

neural map A, comprises Ni model neuron ni (i = 1, …, Ni). Each of these model neu-

rons may be activated to a certain degree ai(t) at each time instant t. The whole activa-

tion pattern ai(t) (i = 1, …, Ni) of a neural map represents a specific neural state, e.g. a

motor plan, a sensory state, or a phonemic state at a certain time instant. The strength

of activation of each model neuron varies between zero (0, no activation) and one

(1, full activation).

All model neurons ni (i = 1, …, Ni) of the neural map A and all neurons nj (j = 1, …, Nj)

of the neural map B can be connected with each other (Figure 1). The entirety of

Ni x Nj neural links or neural connections between a neural map A and B is called a

neural mapping. The strength (or connectivity) of each neural link is called synaptic



Figure 1 Neural map A, B and neural mapping between the two maps. Map A comprises 5 x 5 model
neurons (Ni = 25); map B comprises the same number of model neurons (Nj = 25); neural mapping (black
lines) comprises 25 × 25 = 625 synaptic connections.
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link weight wij. Like neuron activity, each synaptic link weight is typically quantified on

a scale between 0 and 1, where 0 represents no connection and 1 represents maximal

exhibitory connection.

Additionally, neurons within map A or within map B can be interconnected. But in

our modeling approach, this occurs only in the case of the self-organizing phonetic

map and is included within the learning equation for the development of that map.

Only partial speech knowledge exists at birth or even prenatally [14]. Especially speech

motor skills must be acquired step by step during the first years of life (ibid.). In our approach,

speech knowledge is stored by adjusting (or changing) the synaptic link weights (wij). The way

our neural model acquires speech knowledge is described in detail in Results Section.

In contrast to contemporary spiking neuron approaches for modeling brain functions

(e.g. [15,16]), the model neurons defined in our approach represent an ensemble of natural

cortical neurons which are spatially and functionally closely connected. Each model

neuron may represent, for example, a cortical column. (This concept is used mainly in vi-

sion, e.g. [17,18]) Thus, the activation of a model neuron, and the forwarding of that acti-

vation by the axon of that neuron, (i) is the average activation of a bundle of natural

neurons and (ii) the average over a specific time interval, i.e. the time interval of syllable

processing in the case of our approach. This kind of averaging is widely used in ap-

proaches to modeling higher-level brain functions e.g. for self-organizing maps [19-21]

and working memory [17]. These types of neural models can be summarized as activation

rate models. In contrast to spiking neuron models, activation rate models do not focus on

neurophysiological details such as neural spike trains of individual neurons. Rather, the

simplification on the “microscopic” neural level allows us to model large-scale and higher-

level brain functions and thus allows us to model “macroscopic” behavior (e.g. speech

learning and speech processing) on the basis of neurofunctional principles.

The most important neurofunctional principle used in our modeling approach is

Hebbian learning, i.e. a synaptic link between two model neurons is strengthened

(wij increases over time) if both neurons are activated during the same time interval. A

further neurofunctional principle, neural self-organization, results from Hebbian learn-

ing and is described in detail in Results Section.
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Basic components of the model

In the present paper we will focus on the description of the higher-level aspects (cor-

tical aspects) of speech processing, while the lower-level aspects (subcortical and per-

ipheral processing) implemented in our model have already been discussed in other

papers [22-24]. Figure 2 gives an overview concerning the cortical neural maps in our

model. The blue colored boxes represent state maps (i.e. motor plan, phonemic, audi-

tory, and somatosensory state map). These neural maps are assumed to be part of

short-term memory because the neural states occurring in these maps – e.g. a motor

plan, a phonemic, or a sensory state of a specific speech item – are activated only dur-

ing a specific time interval, i.e. the time interval in which that speech item is processed

by the model (e.g. up to a few hundred milliseconds for a syllable). Auditory and som-

atosensory states are summarized in this paper as sensory states. The green colored

map (self-organizing phonetic map) and the neural mappings between the state maps

and the phonetic map (green colored mappings) are assumed to be part of long-term

memory. Here, the motor plan as well as sensory information is stored for each fre-

quent syllable of the language being acquired (the target language).

The motor plan map and the sensory maps are also connected via the sensorimotor

processing loop (Figure 2). The feedforward part of this loop (execution feedforward

pathway) generates speech articulator movements at the level of the articulatory-

acoustic vocal tract model on the basis of currently activated motor plan states for a

syllable, word or utterance. (These are also referred to as “vocal tract action scores” in

[24-26]). The vocal tract model generates geometrical data (i.e. a vocal tract shape and

a set of articulator positions) for each time instant during the production of each
Figure 2 The structure of our neural model for simulating speech acquisition, speech production,
and speech perception. Light blue and light green boxes represent cortical neural maps, while green
double arrows indicate cortical neural mappings (see text). Dark blue arrows and boxes represent the cortical,
subcortical and peripheral sensorimotor processing loops (see text). Red ovals represent babbling and imitation
training sets which control the model during speech acquisition for implementing knowledge.



Kröger et al. EPJ Nonlinear Biomedical Physics 2014, 2:2 Page 5 of 28
http://www.epjnonlinearbiomedphys.com/content/2/1/2
speech item as well as an acoustic speech signal for the speech item being produced

[26,27]. Both signals are processed within the sensory feedback pathway or sensory pro-

cessing pathway in order to generate an appropriate auditory and somatosensory neural

state for the speech item being produced.

It should be noted that a mental lexicon (as defined in [28,29]) is not included in our

model and lies beyond the scope of our modeling approach. The only symbolic linguis-

tic representation used in our approach is the phonemic representation (see Figure 2).

Here it is assumed that each frequent syllable occurring in the target language is repre-

sented by one model neuron within the phonemic state map.

Cortical state maps and neural representations

Motor plan, auditory, and somatosensory state maps are cortical neural maps which

represent higher-level unimodal (i.e. motor or sensory) representations for a currently

processed speech item (in most cases a syllable).

The existence of a higher-level motor representation (i.e. a motor plan state) is postu-

lated in our approach on the basis of [2,30,31]. At this higher motor level, the overall

temporal arrangement of the speech actions, which constitute a speech item, is speci-

fied, while the concrete muscle activation patterns are generated at lower cortical and

subcortical levels. This (higher-level) motor plan state representation is part of short-

term memory because this representation comprises at least the motor organization of

a complete syllable, the duration of which may be up to several hundred milliseconds.

An example of a neural representation of a motor plan state is given in Figure 3.

Eight vocal tract actions are needed in order to produce the syllable “ist” (Standard

German “is”). Up to three tiers (i.e. horizontal rows) represent up to three onset con-

sonant actions for each syllable. Up to two neuron rows represent the vocalic syllable

nucleus; both vocalic rows are needed e.g. for representing a diphthong in German. Up

to three neuron rows represent the coda consonant actions because up to three initial

and final consonants may occur in Standard German. Two neuron rows represent velo-

pharyngeal opening and closing actions, which are needed for the production of nasals

and obstruents (plosives and fricatives). Two neuron rows represent glottal opening

and glottal closing actions, which are needed for the production of voiceless and voiced
Figure 3 Neural representation of a motor plan state for the German word “ist” (“is”). Top line:
phonetic transcription of the word. Below: a 21 x 13 model neuron map (motor plan state map)
representing the motor plan of that word/syllable. Vertical columns: 12.5 ms time intervals; horizontal rows:
temporal location and duration of each vocal tract action. The degree of activation (white = no activation;
to black = full activation) of a model neuron represents the degree to which an articulator has approached
the appropriate vocal tract action target.
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speech sounds, respectively. The last neuron row represents the pulmonary pressure

action which is needed as a basic power source for producing a speech item. The ex-

ample syllable “ist” comprises eight vocal tract actions: (1) glottal tight-closing action

for producing the initial glottal stop consonant [?]; (2) vocalic action for producing the

German lax vowel [I]; (3) apical near-closing action for producing the fricative sound

[s]; (4) apical full-closing action for producing the plosive sound [t]; (5) velopharyngeal

tight-closing action in order to ensure a pressure build-up in the oral cavity during the

production of the obstruent sounds [s] and [t]; (6) glottal opening action in order to en-

sure voicelessness during the production of [s] and [t]; (7) glottal closing action in

order to ensure voicing during the production of the vowel [I]; (8) pulmonary pressure

action in order to provide sufficient aerodynamic power for the production of the

syllable. The neural representation for a further specification of each vocal tract ac-

tion (e.g. articulator and target specification) is not shown here. A detailed description of

our concept of vocal tract action scores (also called “gesture scores”) is given in [25,32,33].

On the basis of this neural representation of a motor plan state (Figure 3), articulator

movements controlling the vocal tract model can be calculated [25]. This represents

the execution of a vocal tract action score by our vocal tract model. The neural repre-

sentation of a motor plan state as introduced above is a distributed neural representa-

tion, because in principle all model neurons of the motor plan state map can

contribute to the representation of a motor plan state. In contrast, the phonemic state

map only comprises local neural representations, because here each syllable is repre-

sented by a specific neuron within the phonemic state map.

Evidence for a higher-level auditory representation is given by [34]. At this level, the

sound impression of a whole syllable can be represented (i.e. how a speech item

sounds). In our approach the higher-level auditory representation is assumed to be a

“neural spectrogram” (see Figure 4). This auditory state representation is part of short-
Figure 4 Neural representation of an auditory state within the auditory state map for the German
word “ist” (“is”). Top line: phonetic transcription of the word. Below: a 21 x 24 neuron map (auditory state
map) representing the auditory state of the word/syllable in the format of a Bark-scaled spectrogram. Horizontal
rows: frequency in Bark groups from 1 to 24 (0 to 20000 Hz). Vertical columns: 12.5 ms time intervals. The degree
of activation of a model neuron represents the acoustic intensity within that frequency-time-square. The blue
vertical line represents the start time of the syllable nucleus, while the two red vertical lines represent the
beginning and end of the syllable. (See also the motor plan state map, Figure 3.)
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term memory because it comprises the auditory sound of a complete speech item

(at least one syllable) and it must be activated over the whole time period of the pro-

duction of at least one syllable in order to be able to check whether the syllable is pro-

duced correctly.

The calculation of the neural representation of an auditory state (i.e. auditory pro-

cessing as a part of sensory processing, see Figure 2) is done by applying a spectral ana-

lysis (amplitude part of a Fourier analysis from 0 to 20000 Hz) to the acoustic speech

signal (Figure 4). A 25 ms Hamming window is used. Thus, the spectral analysis of ad-

jacent columns of model neurons overlaps in time. Each Bark group neural excitation

is estimated by calculating the mean amplitude of all frequency bands occurring within

that specific Bark group. The degree of neural activation (i.e. from 0 or white = no acti-

vation; to 1 or black = full activation) is proportional to the logarithm of spectral ampli-

tude within that Bark group.

The existence of a higher-level somatosensory representation is postulated e.g. by

[10,35]. Each somatosensory representation comprises a tactile and a proprioceptive as-

pect. A tactile higher-level representation in speech comprises at least the spatio-

temporal pattern of contact between articulators (i.e. between the upper and lower lips

and between the tongue and the palate). A higher-level proprioceptive representation

comprises at least the spatio-temporal pattern of distance between articulators and

intended targets for each vocal tract action and thus is comparable to a higher-level

motor plan representation as defined in the present paper. Thus, for this preliminary

version of our modeling approach we used the motor plan state representation also as

a rough estimate for a higher-level somatosensory state representation. However, for a

further refinement of our model, it would be possible to use geometrical data from

the vocal tract model in order to estimate a detailed somatosensory representation

(cf. [36,37]).

The existence of a phonemic state representation is postulated e.g. by [10], referred to

as a “speech sound map” in that paper. In contrast to higher-level motor and sensory

representations, which were implemented in our modeling approach as distributed

neural representations, on the level of the phonemic state representation, each model

neuron is assumed to represent exactly one phonemic state (i.e. a specific syllable or

word; cf. [ibid.]). Thus, if a specific syllable is processed (produced or perceived), one

model neuron becomes maximally activated at the level of the phonemic map. This is

called a local neural representation.

Because speech processing is an ongoing flow of production and/or perception of syl-

lables, it is assumed in our modeling approach that the activation of syllable-related

model neurons within the phonemic map may overlap in time in order to allow the

simulation of the succession of syllables over time.

Because motor plan and sensory state maps must be capable of representing all sylla-

bles (or at least all frequently occurring syllables) of a target language, the total number

of model neurons ni constituting the motor plan is set to 60 × 13 = 780 neurons,

while the total number of model neurons composing the sensory state map is set to

60 × 24 = 1440 neurons. This allows for the modeling of a maximum syllable length of

750 ms, which occurs only if syllables are uttered in isolation. Typically, syllable length

is much shorter, which – in our model representations – leads to many non-activated

neurons at the temporal beginning and end of motor plan and sensory representations.
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These non-activated neurons could be used for the representation of previous or subse-

quent syllables in a further version of our model. The beginning time of the syllable nu-

cleus (i.e. the time of release of the last consonant within the syllable onset) is always

set as a reference time and thus is always represented by the same neurons in the

motor plan as well as in the sensory state maps (represented by the vertical blue line in

Figure 3 and Figure 4). It should be noted that in addition to the required model neu-

rons just described, 132 additional model neurons are needed at the level of the motor

plan map for specifying each vocal tract action (for more detailed information see

[24,25]). The phonemic map is of a comparably small size because the number of

model neurons within this map directly reflects the number of syllables which occur in

the target language at the phonemic level.

The phonetic map

The phonetic map in our modeling approach is a self-organizing map (SOM; for an

introduction to SOMs, see e.g. [21]). The size of a self-organizing map increases during

learning, which in our case means during speech acquisition. It results in an increasing

amount of neural storage for speech knowledge within the mapping between the SOM

and the state maps (see Growing-SOM approaches, e.g. [5,38]). In this preliminary ver-

sion of modeling speech acquisition, we use phonetic maps of a fixed size, e.g. compris-

ing 15 × 15, 20 × 20, or 25 × 25 model neurons.

It will be shown that phonetic maps – as well as self-organizing maps in general –

exhibit local neural representations. We will see that a model neuron within a phonetic

map represents a specific phonetic realization or “exemplar” of a phonemic state. This

may be a specific phonetic realization of a syllable due to different contexts in which

that syllable occurs. Thus, a model neuron within the phonetic map, as in the phon-

emic map, represents a syllable, but in the case of the phonetic map, it represents a

concrete phonetic realization of a syllable. Thus, it is easy to see why a model neuron

within the phonetic map must be directly connected with a motor plan and a sensory

state (see Figure 2). This results from the fact that a fully activated model neuron at the

level of the phonetic map (representing a specific phonetic realization of a syllable)

directly activates the appropriate motor plan and sensory state for the realization of a

syllable. Thus, the information concerning a motor plan and its appropriate sensory

(auditory and somatosensory) states is stored completely within the synaptic link

weights of the mappings between the phonetic map and the sensory state maps.
Modeling speech learning: babbling and imitation

The organization of the phonetic map is based on the link weight values of the neural

mappings between the phonetic map and the sensorimotor state maps. These link

weight values result from learning or training and directly reflect the acquired know-

ledge and the acquired speech skills. In our modeling approach it is assumed that the

phonetic map is a self-organizing map (SOM; also called Kohonen-Map). Further, our

approach assumes that the adjustment of synaptic link weights between the SOM and

the state maps is established mainly within the early stages of speech acquisition, mean-

ing in the first years of life, but that it can be modified and further developed over the

lifetime.
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Overview: babbling and imitation

It is well known that babies start to imitate facial expressions and communicative ges-

tures within the first year of life (e.g. [39,40]). In parallel, they start to imitate speech

items, which they hear from a caretaker, relatively early [14]. Later on, if a toddler is

already capable of communicating with the caretaker, the toddler actively asks for spe-

cific words, e.g. by pointing at an object, and then looking to the caretaker (e.g.

[41,42]). At this stage of learning to speak, the toddler receives (i) an acoustic

realization of a speech item uttered by the caretaker and (ii) information concerning

the meaning of the speech item. The first point is modeled in our approach by activat-

ing the auditory realization, while the second point is modeled by synchronously acti-

vating the phonemic representation for the relevant speech item (see red dashed

arrows in Figure 2 in the area of “communication with caretaker”). Thus, the caretaker

produces an acoustic realization which activates an auditory state within the auditory

state map of the toddler (i.e. of the model). This auditory state can now be imitated by

the toddler in order to generate an appropriate motor plan state.

But how does the toddler imitate a speech item produced by the caretaker? There are

two major problems. Firstly, at the beginning of the learning procedure, the toddler

does not know how to generate a motor plan state which could result in an auditory

state similar to that produced by the caretaker. Secondly, the toddler does not possess

the adult vocal tract and therefore cannot imitate the fundamental frequency or form-

ant structures of a speech item produced by an adult: a toddler normally produces

higher formants as well as higher fundamental frequency. This second problem is re-

ferred to as the “speaker normalization problem” (e.g. [43]).

These problems are not addressed in this modeling study for several reasons. Firstly,

they may be solved in part by the caretaker, since caretakers are able to use a specific

child-directed way of speaking (“motherese”, see e.g. [14]). This way of speaking nor-

mally involves the adult trying to adapt the formant frequency and fundamental fre-

quency targets of their speech sounds towards those targets which can be produced by

the child. Additionally, the problem may be solved in part by the toddler herself: Even

if the auditory result produced by the toddler differs from the original that was pro-

duced by the caretaker, the caretaker can reward the toddler for each correct or at least

understandable realization of a word (“reinforcement learning”). Thus, the toddler is

able to establish an initial association between his own realizations and adult realiza-

tions of the same word (e.g. the model stores two or more realizations for each speech

item; one or more child versions and one or more adult versions).

A further, theoretically more important solution for these problems is that before the

imitation state, the toddler (or the neural model) should already have some experience

or knowledge of how to generate a motor plan state for a given auditory state. This

knowledge is normally acquired by the toddler during the “babbling” phase [7,10,44]:

The toddler (or the model) starts with randomly generated motor plan states (see red

dashed arrow in Figure 2, “motor initiation”), then executes these motor plans (i.e. gen-

eration of an articulatory and acoustic speech signal by the vocal tract model), and fi-

nally performs the sensory processing of these signals, so that the appropriate auditory

and somatosensory states are generated for all motor plan states (see Figure 2). Thus

the model develops a set of “sensorimotor associations” by “exploring the acoustic and

articulatory states of its own vocal tract”. This set of associations is stored at the level
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of the phonetic map and its mappings towards the motor plan and sensory maps. This

learning or training is called babbling training. Babbling always precedes imitation, but

the two can also be somewhat interwoven due to the reasons outlined in this section.

Clear language-specific speech production starts at around 10 months of age). Indeed,

the importance of babbling training in speech acquisition, particularly the sensory pro-

cessing of the signals produced in babbling, is made clear by the fact that hearing chil-

dren progress from babbling sounds to babbling syllables, while deaf children do not

progress to the syllable stage (e.g. [45]).

Adjustment of synaptic link weights

Next we will describe how the adjustment of synaptic link weights between the state

maps and the self-organizing phonetic map takes place in our model during training

(learning). We assume that a training data set comprises an amount of D training

items, i.e. D state representations d (d = 1, …, D) with a model neuron activation pat-

tern aid (i = 1, …, Ni), comprising a motor plan state, sensory state, and a phonemic

state activation pattern, and that each training item is applied to the model C times

(C = number of training cycles) where the succession of training items varies randomly

per training cycle d(t). The synaptic link weights wij between state map neurons ni and

phonetic map neurons nj were updated (i.e. were changed incrementally) from training

step t to training step t + 1 (T = C*D, t = 1, …, T training steps in total) by applying the

following equation:

wij tþ 1ð Þ−wij tð Þ ¼ Hj tð Þ�L tð Þ� aid tð Þ−wij tð Þ
� �

; ð1Þ

where i = 1, …, Ni is the index for all state map model neurons and where j = 1, …, Nj is

the index for all phonetic map model neurons. Here, Hj(t) denotes the Gaussian neigh-

borhood kernel around the best matching model neuron j (i.e. winner neuron), if the

phonetic map is activated by the training item (see Equation 4), and where L denotes

the learning rate. The learning rate decreases over time exponentially:

L tð Þ ¼ L 0ð Þ� exp −0:00001�tð Þ; ð2Þ

where L(0) = 0.9 is the initial learning rate. The radius σ(t) of the Gaussian neighbor-

hood kernel (Equation 3) also decreases exponentially during training (Equation 4):

Hj tð Þ ¼ exp −0:5� nk−nj
� �2

= s tð Þð Þ2
n o

: ð3Þ

Here, nk denotes any neuron within the self-organizing map and |nk-nj| denotes the
distance of a neuron nk to the winner neuron ni defining the center of the neighbor-

hood kernel. σ(t) is defined here arbitrarily as the radius of the neighborhood kernel.

The neighborhood factor Hj, which is 1 for nj, declines below a value of 0.6 if the

neuron distance exceeds σ(t) and below 0.14 if the neuron distance exceeds 2σ(t). The

temporal decrease of the neighborhood radius is:

s tð Þ ¼ s 0ð Þ� exp −0:00001�tð Þ; ð4Þ

where σ(0) = 5 neurons. Thus, 2σ(0) is 40% of the overall length of the phonetic map

(the overall length is 25 neurons). The winner neuron nj, specifying the center of the

neighborhood kernel, is calculated by looking for the maximally activated neuron
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j within the phonetic map. The activation pattern aj(t) of the phonetic map during the

application of the training item ai(t) is calculated as

aj tð Þ ¼ sum i¼1;…;Nið Þ wij tð Þ�ai tð Þ
� �

: ð5Þ

The incremental change of synaptic link weights, quantified by the equations above, de-
scribes Hebbian learning, because synaptic link weights wij mainly change for those synaptic

connections for which phonetic map neurons as well as state map neurons are strongly acti-

vated. At least synaptic link weights wij increase towards ai, i.e. link weights adapt to the cur-

rently applied activation pattern ai (i = 1,…, Ni). Thus, this learning is non-supervised: No

ideal activation pattern is known in advance for the phonetic map. Learning always tries to

approximate the activation pattern of the currently applied training item. Links with link

weights wij grow in both direction, i.e. from state maps towards phonetic map as well as vice

versa. This bidirectionality is compatible with the idea of Hebbian learning.

We started babbling training with a random link weights initialization for wij, taking

values between 0 and 0.5 in order to model moderate neural interconnectivity at the

beginning of training. Our criterion for stopping imitation training is defined as follows:

A predefined amount of neurons of the phonemic map (e.g. 95%) should indicate a

strong synaptic connection with one neuron of the phonetic map (e.g. wij > 0.8). That

implicates that a predefined percentage of syllables is learned by the self-organizing

network in a way that at least one phonetic realization exists for that syllable. From our

experience, this indicates that the associated phonetic states already have a correct as-

sociation between motor plans and sensory states for that syllable.

The situation is more complex in the case of babbling training, since in that case no sim-

ple criterion can be given for reaching a specific level in sensorimotor knowledge or sensori-

motor skill learning. Since babbling training is always guided by imitation, in order to train

appropriate regions within the multidimensional space of motor parameters, the criterion

used in our modeling approach is that babbling training will be continued as long as a

speech item under imitation is not reproduced “distinguishably”. It should be noted that all

babbling trials performed by our model for producing an imitation training item (this can

be referred to as “guided babbling”) are controlled aurally by a supervisor. It is up to this

person to decide subjectively whether an item is “distinguishable” or not. In the case of this

study, babbling knowledge was sufficiently acquired after 500 training cycles.

In our experience, babbling training requires a great deal more training cycles than

imitation training, since the organization of the phonetic map emerges during babbling

training and is only refined during imitation training (up to 500 training cycles are re-

quired during babbling training, while 50 to 150 training cycles are sufficient in many

imitation training situations; see [44]). This decrease in training cycles towards imita-

tion training may result from the fact that – based on our experience with our simula-

tion experiments – the emergence of phoneme regions never indicates a reorganization

of the sensorimotor structure of the phonetic map with respect to the phonetic features

that have already been acquired.

The learning equations (1)-(5) given above are based on Kohonen’s learning equa-

tions [21]. However, Kohonen used just one state map and thus did not subdivide state

maps with respect to different modalities. Our model adapts and expands Kohonen’s

approach to the areas of speech acquisition and speech processing by considering the

sensory, motor, and phonemic modalities.
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Furthermore, Kohonen’s approach calculates synaptic link weights only in one direction,

e.g. from the sensorimotor state maps towards self-organizing map. In contrast, we as-

sume that synaptic connections with strength wij arise not only from model neurons ni of

the state maps towards model neurons of the self-organizing phonetic map nj, but also in

the opposite direction, from the phonetic map towards the state maps with the same link

weight values wij. This bidirectionality within the mappings of our model (Figure 2) is im-

portant especially in modeling not just speech acquisition and speech perception, but

speech production as well. This modification is a further contribution of the present paper

in adapting Kohonen networks to the areas of speech acquisition and speech processing.
Results
Description of simulation experiments

Six groups of simulation experiments were performed in order to feed speech know-

ledge into our model (Table 1). Because imitation always requires some previous sen-

sorimotor knowledge (see above), in our model, babbling training is performed before

imitation training. But it is important to note that the language-specific speech items

spoken by the caretaker normally guide babbling: the set of all possible motor plan

states which could be generated randomly would be infinitely huge and thus could not

be trained by the model. For this reason, babbling training is always directed towards

the specific language being acquired (e.g. [46]).

In order to feed first sensorimotor knowledge into our model, we started with protovo-

calic babbling (Table 1). In a first group of simulation experiments, the tongue position of

the vocal tract model was randomly positioned and the corresponding auditory state was

calculated for each training item. After babbling training, the synaptic link weights be-

tween the motor plan map and the auditory map are tuned in a way that (i) the motor

plan states and the appropriate sensory states (as produced by the sensorimotor process-

ing loop) are associated and that (ii) these sensorimotor states are ordered with respect to

two important vocalic phonetic features “front-back” and “low-high” [44].

In a second group of babbling experiments, motor plan states were initiated which start from

different labial, apical, and dorsal closures and which end in different protovocalic states (proto-

consonantal babbling, Table 1). After training, the consonantal phonetic feature “place of articu-

lation” (labial, apical, dorsal) are learned. These are in addition to the vocalic phonetic features,

which had previously been learned. Three compact regions appear within the resulting self-

organizing map. These regions represent the three different places of articulation [44,47].

Because initial sensorimotor knowledge is gained after performing these babbling training

simulations (i.e. the associations between the motor plan and the sensory states, along with

the ordering of these sensorimotor states at the level of the phonetic map with respect to

phonetic features), the motor plan states can now be roughly estimated based on the audi-

tory states. Thus, the model now is ready for vowel and consonant imitation. We continued

with imitation training of a model language comprising five vowels V =/i, e, a, o, u/(see third

group of simulation experiments, Table 1) and 15 syllables comprising all combinations of

these five vowels with the consonants/b, d, g/as CV-syllables (consonant-vowel-syllables, see

fourth group of simulation experiments, Table 1). This imitation training does not increase

the number of phonetic features, which have already been learned by the model during bab-

bling, but rather achieves a labeling of specific sensorimotor states with respect to phonemic



Table 1 Groups of simulation experiments for speech acquisition

Group name Specification of training items Number of training items Size of SOM Phonetic features learned Published

Protovocalic babbling (prelinguistic) Variation of tongue position 1076 15 × 15 Front-back; low-high; [44]

Protoconsonantal babbling (prelinguistic) Variation of initial closure: labial, apical, or dorsal 279 15 × 15 Place of articulation; [44,47]

Vowel imitation (part of model language) 5 vowels (V): /i, e, a, o, u/ 500 15 × 15 Front-back; low-high; [44]

Consonant imitation
(part of model language)

15 CV syllables: 5 vowels (V) with 3 consonants
(C): /b, d, g/

465 15 × 15 Place of articulation; [44,47]

Syllable imitation
(model language: V, CV, CCV)

70 syllables: 5 V + 5 V with 9 single C: /b, d, g, p, t, k, m, n,
l/ as CV + 5 V with 6 clustered CC: /bl, gl, pl, kl/ as CCV

600 25 × 25
Place and manner; voiced-voiceless;

type of syllable;
[36,48]

Imitation of frequent syllables
(real language)

Standard German; 200 most frequent syllables;

Male speaker; one realization per syllable 200 15 × 15 Stressed-unstressed; vowel type; [22]

20 × 20 Same;

25 × 25 Same;

Female speaker; up to 27 realizations per syllable 703 25 × 25 Same; This study
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categories. Due to the inclusion of phonemic states during imitation training (in contrast to

babbling training), here there is also an association established between the sensorimotor

states and the phonemic states. Thus, many neurons of the phonetic map can be labeled

phonemically. Because phonemic states usually represent similar sensorimotor states,

phoneme regions occur for each phonemic vowel state and for each phonemic CV-syllable

state at the level of the phonetic map. A model neuron within the phonetic map is a member

of a phoneme region if there are strong synaptic connections between this model neuron

and a specific model neuron within the phonemic map which represents that phoneme or

phonemic state [44,47].

After imitation training of V- and CV-syllables with V =/i, e, a, o, u/and C =/b, d, g/, a

fifth group of simulation experiments was performed. Within this group of simulation ex-

periments, the set of consonants was extended (C =/b, d, g, p, t, k, m, n, l/) and first CCV-

syllables (i.e. syllables with initial double-consonant clusters/bl, gl, pl, gl/) were allowed and

consequently trained. Within this training step – which included guided babbling with the

new groups of consonants undergoing imitation training – new consonantal phonetic fea-

tures result from the further ordering of sensorimotor items at the level of the phon-

etic map, i.e. “voiced-voiceless”, and “manner of articulation” (plosive, nasal, lateral;

see Table 1). Also, an appropriate ordering of phoneme regions is achieved at the

level of the phonetic map for all 70 phonemic syllable states (see [36,48]).

Finally, a sixth group of simulation experiments was performed in order to train a

natural language, in our case Standard German (see Table 1). First, we assembled a cor-

pus of Standard German on the basis of 40 children’s books. These books were targeted

for children up to six years of age. We transcribed 6513 sentences in total, leading to

70512 words in total, comprising 4763 different syllables [22]. The 200 most frequent

syllables were extracted from this database and used for training the model. In contrast

to model language training (simulation experiments 3, 4, and 5 in Table 1), where

phoneme realizations within the training set were generated in a synthetic way through

a rule-based version of our articulatory synthesizer [25], here we used natural acoustic

realizations of syllables which were uttered by native speakers, one male (33 years old)

and one female (27 years old), both without any known anomalies in speech or hearing.

In a first simulation experiment of this sixth group of experiments (Table 1), only one

sentence was uttered by the male speaker for each frequent syllable. This syllable was ex-

tracted from the acoustic signal, and the appropriate auditory state was generated and imi-

tated by the model. Thus, just one realization was trained per syllable, but the training

already took into account the differences in frequency of occurrence for the 200 most fre-

quent syllables (for details, see [22]). In the present paper, we report on a further simula-

tion of imitating of these 200 most frequent syllables by using a refined training data set

comprising more than one realization per syllable (see Results section).

We now provide a summary of the babbling training results. Babbling training always

resulted in (i) an association of motor plan and appropriate sensory states, and (ii) an

ordering of these sensorimotor states with respect to sensorimotor or phonetic features.

Subsequent imitation training always resulted in an additional labeling of specific sen-

sorimotor states – represented by specific model neurons within the phonetic map –

with respect to phonemic categories. Thus, phoneme regions appear within the phonetic

map, since similar sensorimotor states are usually represented by adjacent model neu-

rons within the phonetic map (see e.g. Figure 8, Appendix). The emergence of
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phoneme regions implies that a phonemic state can be represented by more than one

neuron at the level of the phonetic map. These neurons at the level of the phonetic

map, representing the same phonemic state, are referred to as exemplars in the context

of our modeling approach; see also [49] for a comparable use of this term. Thus, a

phonemic state can be represented by different learned or trained phonetic realizations,

referred to as exemplars of that phonemic state. For example, the three model neurons

in the upper left corner of the phonetic map shown in Figure 8 (see Appendix) repre-

sent three (stored or learned) exemplars of the Standard German syllable/mIt/(“with”).

A closer inspection of these three exemplars indicates that there are slightly different

sensorimotor or phonetic features for each state (see motor plan states and auditory

states of these exemplars, presented in Figures 9 and 10 in the Appendix).

Imitation training of frequent syllables

A female speaker (27 years old; with no known anomalies in speech or hearing) uttered

up to 27 realizations of the 200 most frequent syllables of our children’s book corpus [22].

Syllable realizations were produced in proportion to the frequency of occurrence of a syl-

lable in the corpus (Table 2). Thus, 703 sentences were recorded in total (D = 703).

The syllable under consideration was marked within each sentence and a motor plan

state was generated for each of these syllables using our resynthesis procedure [50].

Neural representations of all motor plan states and auditory states were calculated for

each syllable. The resulting training items were applied to the neural model.

In total, 120 training cycles were sufficient in order to represent 95% of the 200 most

frequent syllables of our corpus (T = C * D= 120 * 703 = 84360 training steps in total). The

criterion for terminating the training was defined as follows: A strong synaptic connection

(wij > 0.8) was established for 95% of the model neurons within the phonemic map (phonemic

states) and at least one model neuron within the phonetic map for each of these phonemic

states. Thus, at least one exemplar must exist for 95% of all phonemic states (190 of 200 sylla-

bles). The learning curve resulting from training our model is presented in Figure 5. It can be

seen that a strong increase in syllable learning occurs above training cycle 60. A saturation ef-

fect is reached after approximately 120 training cycles. We checked to make sure that the 5%

of syllables which were not learned were below rank 150 for the 200 most frequent syllables.

The neurons of the phonetic map which exhibit a strong synaptic link towards a

phonemic state (i.e. all exemplars) are marked in Figure 8 (Appendix) by their phon-

emic transcription. The link weight distributions for all model neurons of the phonetic

map towards the motor plan and auditory state map are given in Figures 9 and 10

(Appendix). From these displays of the organization of the phonetic map, which is
Table 2 Frequency of occurrence of a specific syllable in the children’s book corpus and
in the training set

Rank of syllable (with
respect to frequency)

Frequency of occurrence
in corpus

Number of training items

1 2367 27

20 692 8

50 390 4

100 193 2

200 88 1



Figure 5 Learning curve resulting from simulation of imitation training for our children’s book
corpus. X-axis: number of training cycles; y-axis: percentage of syllables already acquired.

stressed

unstressed

reduced

long

short

diphthong

short

Figure 6 25 × 25 phonetic map after training, representing phonemic link weights (see also Figure
8 in the Appendix). Separate regions emerge within this map, representing the syllable features stressed
vs. unstressed and the vocalic features reduced vs. nonreduced. Nonreduced vowels can be short vowels,
long vowels and diphthongs in Standard German.
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present after imitation training, it can be clearly seen that neighboring states at the

level of the phonetic map represent similar sensorimotor features. Thus, the distribu-

tion of states at the level of the self-organizing phonetic map can be labeled as quasi-

continuous. This in part reflects the ordering of sensorimotor states with respect to

phonetic features. The organization of the phonetic map for the experiment described

here is discussed in more detail in Discussion section.

A careful inspection of the distribution of the phonemic transcriptions over the

phonetic map (Figure 8, Appendix) indicates an ordering of syllables with respect to

the syllable feature stressed-unstressed and with respect to the vocalic features nonre-

duced-reduced, where nonreduced vowels in Standard German can be short vowels,

long vowels, or diphthongs (Figure 6). Also, a loose ordering with respect to other vo-

calic and consonantal phonetic features can be seen.

Because our training data set is designed in such a way that frequent syllables occur

with more realizations than less frequent syllables (see Table 2), syllables are processed

with different frequency during training. After training, this is reflected in the resulting

organization of the phonetic map. Here, the number of neurons representing a syllable

with strong synaptic connection to a phonemic state (i.e. the number of exemplars per

syllable, or the size of the phoneme region) is proportional to the frequency of occur-

rence of that syllable in the training set (Figure 7). This means that the more often a

syllable is processed by the model, the larger the area is within the phonetic map which

represents this syllable. (Or, the more often a syllable is processed by the model, the

higher the number of exemplars which are stored for that phonemic state is and the

bigger the appropriate phoneme region is).

Moreover, we checked whether the phonetic variability of the exemplars for a specific

frequent syllable, represented in the phonetic map, is comparable to the phonetic vari-

ability within the different realizations of that syllable within the training set. This was
Figure 7 Number of model neurons representing a syllable at the level of the phonetic map as a
function of the number of training items occurring for that syllable within the training set.
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done by comparing the mean variance of the activation pattern of the neural auditory

states resulting from the realizations of the training set for a specific syllable to the

mean variance of the activation patterns of neural auditory states which are co-

activated from neurons of the phonetic map, assuming that that neuron of the phonetic

map represents an exemplar of the same syllable (exemplars which had already been

learned, represented by link weights. It can be seen that the phonetic token variability

within the training set is comparable to that of exemplars for some syllables, while it is

smaller for most syllables (Table 3).
Speech processing

Because speech production and speech perception are already a part of speech acquisi-

tion (babbling and imitation are perception of a caretakers utterance, followed by sev-

eral production trials of the toddler or model), the performance of speech production

and perception increases during the continuously ongoing process of speech acquisi-

tion. In our modeling approach, we defined a specific landmark within the process of

acquisition at which the performance in production and perception was tested. Thus,

speech acquisition was defined as (nearly) complete if 95% of the syllables occurring in

the training set have been acquired. It should be noted that this criterion is a direct re-

flection of the fact that our training sets and self-organizing maps are of fixed sizes.

The remaining 5% of syllables are easily acquired if the training set is widened, e.g. if in

an augmented training set and an augmented phonetic map are used for further train-

ing at this landmark for speech acquisition. Thus, testing the quality of performance of

the model’s production and perception capabilities at a landmark of speech acquisition

is also a check on the quality of speech acquisition accomplished so far.

Bidirectional cortical mappings

It is important to keep in mind that self-organizing maps as defined by [19] only use

mappings from that map, which represents the training items (i.e. the sensorimotor

state maps in our case) towards the self-organizing map (the phonetic map in the case
Table 3 Training results for 10 most frequent syllables

Syllable Number of model
neurons (exemplars)

Mean variance
of exemplars

Mean variance
of training items

‘?Unt 13 0,004114 0,004037

‘di: 11 0,001899 0,004117

‘zi: 10 0,002830 0,007564

t@ 10 0,002761 0,003878

‘dE6 10 0,001903 0,008438

‘?E6 8 0,002896 0,013582

n@ 7 0,002053 0,005684

g@ 6 0,001418 0,003845

n@n 5 0,002184 0,005175

b@ 3 0,001906 0,001881

First column: phonetic transcription (SAMPA) of the 10 most frequent syllables of our children’s book corpus; second
column: number of neurons representing all realizations of these syllables within the phonetic map (number of
exemplars); third column: mean variance of the auditory states of all realizations by activating specific neurons within
the phonetic map, representing exemplars for a syllable; fourth column: mean variance of the auditory states of all
realizations activated by the training items directly.
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of our modeling approach). But Hebbian learning in principle allows the emergence of

neural connections between synchronously activated neurons in both directions. Thus,

in our modeling approach we assume that the neural mapping between state maps and

phonetic map is bidirectional. Thus, neural connections occur and increase in connect-

ivity in both directions, i.e. from state maps towards the phonetic map and vice versa.

The increase in connectivity directly reflects the degree of activation of the model neu-

rons within each training step.

This existence of bidirectional mapping with the same link weight values for the syn-

aptic neural connections in both directions is important for the other working modes

of the model. Aside from speech acquisition, the model comprises the working modes

of speech production and speech perception.

In the case of speech production, it can be assumed that the production of a word or

utterance leads to a successive activation of phonemic syllable states at the level of the

phonemic map. Thus, if the production of a specific syllable starts, we expect the full

activation of that neuron, which represents that specific syllable at the level of the

phonemic map. This directly leads to a co-activation of neurons at the level of the

phonetic map, initiated by the neural mapping from the phonemic state map towards

the phonetic map (Figure 2). Subsequently, the strongest co-activated model neuron at

the level of the phonetic map leads to a co-activation of the appropriate motor plan

and sensory states via the neural mapping from the phonetic map towards motor plan

and sensory state maps. On the basis of the motor plan activation pattern, the syllable

can be articulated by activating the feedforward execution path. Finally the resulting

auditory state, activated by a subsequent sensory processing of the articulatory-acoustic

vocal tract model output via the sensory processing pathway, can be compared with the

auditory state of that syllable, already activated from the neural mapping between the

phonetic map and the auditory state map. In this case, two states must be compared at

the level of the auditory state map, which is not included in the version of our model

introduced here. However, a concept for the comparison of sensory states and for the

calculation of sensory error signals has already been introduced in [7].

In the case of speech perception (e.g. perception of the caretaker), an auditory state is

activated at the level of the auditory state map (Figure 2). This leads to a co-activation

of the phonetic map via the mapping from the auditory state to the phonetic state map

and then to the selection of a winner neuron at the level of the phonetic map. Subse-

quently, a phonemic state is activated at the level of the phonemic map if the winner

neuron at the level of the phonetic map is part in the relevant phoneme region.

It is possible that due to the context within a specific communication situation, com-

peting candidates (competing syllable states) are already activated at the level of the

phonemic map. This could lead to top-down effects in perception and influence the

neural activation pattern at the level of the auditory map. These top-down effects in

speech perception are not included in the version of our model presented in the

present paper.

Speech production

The quality of the 50 most frequent syllables produced after speech acquisition (i.e.

after the adjustment of synaptic link weights of the mappings between the phonetic

map and all state maps as described in above) was tested by performing a combined
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acoustic perception and vocal tract action identification test. A phonetic expert (BK,

male, 53 years old, no known speech or hearing anomalies) performed this test. In this

test, the 50 most frequent syllables, which were already acquired during simulation of

speech acquisition, were generated by the model. A winner neuron was calculated at

the level of the phonetic map by activating a specific phonemic state (a specific syl-

lable). Subsequently, the appropriate motor plan state was co-activated for that winner

neuron, and then the articulatory and acoustic signal was generated using the feed-

forward execution path including our vocal tract model (see Figure 2).

In a first step of this test, the expert was advised to transcribe all 50 acoustic speech

stimuli. Stimuli were presented twice each in random order. In the case of differences

between both transcriptions of the same acoustic stimulus (as was the case for 8 stimuli

in this experiment), the stimulus was presented a third time and the expert was advised

to choose one of both transcriptions as the nearest transcription.

An initial evaluation of the results of this transcription process was done by compar-

ing the transcriptions with the phonemic transcriptions defining the phonemic states

during the speech acquisition process. The overall rate of correct transcriptions was

78%. A close inspection of the resulting transcriptions showed that transcription errors

mainly resulted from confusions in the place of articulation for nasals and for voiced

plosives. Our impression is that this results primarily from the lack in acoustic quality

of our vocal tract model rather than from errors in controlling articulation (errors in

generating motor plan states).

Thus, in the case of those speech items which showed transcription errors, we checked in

a second step whether the correct vocal tract action was produced at the level of the articu-

latory signal. This was done by inspecting the articulatory movement pattern generated by

the vocal tract model. This resulted in a rate of correct syllable production of 94%, which

we assume means that the model is capable of articulating well after speech acquisition.

The remaining errors (3 of 50 syllables) resulted from an incorrect perceptual

categorization of the phonetic feature “stressed vs. unstressed”, which may result from

the fact that the settings of the pulmonary and laryngeal actions was fixed within the

current version of our model. Thus, the main acoustic cue for identifying the stressed

vs. unstressed condition, which is available in our model, is the length of the whole

syllable and the length of single sound segments within each syllable.

Speech perception

Speech perception (i.e. the speech recognition rate) was tested by calculating the recognition

rate for the 200 most frequent syllables, spoken three times by the same person (female, 27

years old). This person was the same person whose voice was recorded for the training

items. These test items were fed into the model and resulted in the activation of a winner

neuron at the level of the phonetic map and subsequently to an activation of one neuron at

the level of the phonemic map (the identification process). The rates for correct identifica-

tion are listed in Table 4. It can be seen in Table 4 that the recognition rate decreases with

decreasing frequency of occurrence of a syllable within the children’s book corpus.
Discussion and conclusions
A quantitative model is introduced in this paper which is capable of simulating the

basic processes of speech acquisition, speech production, and speech perception. This



Table 4 Recognition rate of test items of 1 to N with N = 5 to N = 200 most frequent
syllables

Number of most
frequent syllables

Recognition rate in %
without frequency correction

Recognition rate in %
with frequency correction

5 100,0 100,0

10 97,2 97,4

20 91,1 93,2

50 90,2 92,7

100 88,9 92,3

200 85,8 91,8

The recognition rate without frequency correction (second column) shows the mean recognition rates for all N syllables,
each syllable weighted equally. The frequency correction (third column) shows recognition rates for all N syllables, now
weighted with respect to the frequency of occurrence of each syllable within the corpus (i.e. highly frequent syllables
occur more often and also indicate higher recognition rates).
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approach does not include higher-level linguistic processes such as the acquisition of

semantic or higher-level grammatical knowledge. Thus, modeling of the mental lexicon

(cf. [28]) is beyond the scope of our approach. Our model focuses on the sensorimotor

aspects of speech acquisition, production, and perception. The speech knowledge, in-

cluding speech production skills, acquired by our model may be comparable to the

knowledge which is theoretically assumed to constitute the mental syllabary [51]. But

in contrast to the model presented in [51], our model is strictly quantitative; it is cap-

able of processing acoustic and articulatory data; and it is based on computational and

theoretical neuroscience.

Thus our approach for modeling sensorimotor aspects of speech should be seen as a

counterpart to the quantitative computational neurolinguistic approach developed by

[5,38] for modeling the mental lexicon. Initial ideas as to how to combine these two ap-

proaches are discussed in [22,42]; see the discussion concerning P-Map and S-Map in

these papers. Consequently, our modeling approach focuses on the early phases of

speech acquisition (mainly first 18 months of life), while other approaches are focused

on the rapid growth of the mental lexicon (the vocabulary spurt, starting at around 18

months; e.g. [52]).

As mentioned in the Introduction of the present paper, our approach should be seen

as complementary and not as contradictory to the sensorimotor model introduced by

Guenther (DIVA model [7,10,11,35]). On the one hand, while the DIVA model and our

model both comprise phonemic, motor and auditory and sensorimotor neural state repre-

sentations, our approach additionally introduces the phonetic map as an intermediate

map between the sensorimotor and linguistic parts of the model. This intermediate level

could be added to the DIVA model as well. On the other hand, a quantitative modeling of

the processing of sensorimotor mismatch – as is done by Guenther and colleagues [ibid.]

using specific “error maps” – is not currently implemented in our approach but could be

added easily. A difference between the approaches is that our approach explicitly assumes

a motor planning level (cf. [2]), while the DIVA approach directly associates its speech

sound map with its primary motor map.

The modeling approach for speech acquisition and speech processing (production

and perception) as introduced in the present paper bases the ability to simulate behav-

ioral phenomena, such as the production and perception of speech items and learning

to speak, upon brain-related principles such as Hebbian learning and self-organization.
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This goal is achieved by using an activation rate model. In contrast, if we were to use

fine-grained “neuromicroscopic” approaches such as spiking neuron models (e.g. [15]),

we would not be able to simulate “macroscopic” large-scale behaviors such as speech

acquisition, production and perception. Thus, our approach is a feasible compromise

between simplicity in modeling neural “microfunctions” on the one hand and the ability

to simulate complex “macroscopic” behavioral phenomena on the other. Moreover, our

approach provides explanatory power for understanding the behavioral phenomena of

speech processing from a neurofunctional point of view. At this point, it should be

noted that our model not only gives quite good results in the performance of produc-

tion and perception after training (see Discussion section), but also is capable of simu-

lating complex behavior such as categorical speech perception [44].

A basic functional neural structure is hypothesized in this paper and is introduced as

a preliminary neurofunctional model for speech acquisition, speech production, and

speech perception. Three hypotheses form the basis of the model’s structure: (i) We as-

sume that there are three neural maps representing higher-level motor plans and

higher-level auditory and somatosensory states. The activation patterns of syllabic

speech items are manifested at this level during the time period of processing (i.e. pro-

ducing or perceiving) of that speech item. (ii) In parallel, a phonemic (i.e. abstract lin-

guistic) state representation is assumed to be activated for each speech item at the level

of the phonemic map. The activation of a syllable state at the level of the phonemic

map occurs at the beginning of the production process as well as at the end of the per-

ception process. (iii) Only one intermediate neural map is assumed in order to associate

motor plan, sensory, and phonemic states. This neural map is postulated to be a self-

organizing map. This map is referred to as the phonetic map because it is supramodal,

i.e. it is above the motor and sensory modalities. At the level of this map, phonetic

features result from the ordering of sensorimotor speech states during neural self-

organization.

Two hypotheses are assumed for speech acquisition, i.e. for training the model: (i)

Hebbian learning (cf. [53]) occurs during speech acquisition: “Wire” two neurons if

they are activated within the same time period, i.e. if these neurons “fire” within the

same time interval. More specifically, one of these neurons must be part of the phon-

etic map, while the other neuron is part of the sensorimotor state maps. Because many

neurons, especially at the level of the state maps, may be activated in parallel, the “wir-

ing” process (i.e. the increase in synaptic link weights, also referred to as the increase in

synaptic association) occurs in parallel for many neurons between the sensorimotor

state maps and the phonetic map. (ii) Training can be subdivided into babbling training

and imitation training, where babbling training comprises only motor and sensory in-

formation because the goal of babbling training is to learn sensorimotor relations.

Learning sensorimotor relations means associating sensory and motor plan states. This

is easily accomplished during babbling because sensory states are produced directly

from motor plan states by using the peripheral vocal tract model, which is included in

our model (Figure 2). Additionally, imitation training requires phonemic information in

order to categorize sensorimotor states acquired previously at the level of the phonetic

map. Imitation training leads to the emergence of phoneme regions.

The results of the imitation training experiment described in this study, which used

the 200 most frequent syllables of Standard German on the basis of a children’s book
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sentence corpus, indicate that the phonetic map can be subdivided into two major

areas: stressed and unstressed syllables. In addition, in the case of stressed syllables,

some sub-areas can be found which reflect different types of vowels (long, short, diph-

thong; see Figure 6; frequent unstressed syllables in our corpus are mainly produced

with a reduced vowel). Other imitation experiments indicate that sensorimotor states

are ordered at the level of the phonetic map with respect to different phonetic features

such as front-back, low-high, place and manner of articulation, etc. (see Table 1). This

result is not affected if different random initializations for link weights are used or if

motor and sensory representations are weighted in a different way. These modifications

mainly cause rotations or a mirroring of the phonetic map, but they do not affect the

resulting phonetic ordering.

Moreover, the simulation experiment discussed in this paper indicates that the more

often a training item is processed by the model, the larger the resulting phoneme region

is, i.e. the more model neurons represent exemplars (or realizations) of that phonemic

state at the level of the phonetic map (see Figure 7). In addition, it should be noted that in

our approach, imitation training requires fewer training cycles than babbling training. The

number of training cycles is approximately 600 for babbling training and around 150

training cycles for imitation [44]. This reflects the fact that the phonetic map and especially

the ordering of phonetic states is in large part established during pre-linguistic babbling

training. This ordering is refined during imitation training with respect to language-specific

demands. Even the emergence of phoneme regions does not lead to a reorganization of the

phonetic map, which is already established during babbling training.

There are still some shortcomings in our approach which we will address by further

refining the model in future studies. Firstly, simulation experiments for babbling and

imitation were done step-by-step and not – as it would be more realistic – as one con-

tinuously ongoing simulation experiment. The main reason for that is that we did not

use a growing self-organizing map (GSOM, see [5]) but rather SOMs of fixed sizes (see

Table 1). A further reason is that we are currently not able to guide babbling by imita-

tion. The current version of the model is not able to imitate a given speech item dir-

ectly and thus is not able to generate motor plans which are related to a potentially

successful motor plan for imitating the speech item. This work is done manually in the

current version of the model. It is for this reason that we currently establish babbling

and imitation training sets manually.

Thus, a further step in improving our model would be the implementation of a mod-

ule for babbling training guided by imitation. In addition, the introduction of GSOMs

is an important future step and will allow us to avoid predefining the size of the

phonetic map and to allow an ongoing continuous acquisition of speech knowledge in-

cluding sensorimotor speech skills. This augmented model should also include the ac-

quisition of prosodic features, such as the basic intonation contours of the target

language, as well as the acquisition of basic stress patterns of words and utterances.

A second shortcoming of the current version of our model is the problem of speaker

normalization [43]. Even in the case of imitation training, the imitation trials produced

by the model are evaluated aurally by an expert before they are used as training items.

In the current version of the model, it would be possible to store both auditory realiza-

tions (the one pre-produced by the external speaker or caretaker) and is the one suc-

cessfully imitated by the model or toddler. Both groups of auditory realizations could
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be associated with the phonemic states as well as with motor plan states. In the case of

imitating more than one external speaker, we potentially could integrate two or more

“speakers” into the phonetic map into future versions of our approach, which would

allow us to augment the phonetic map to include the phonetic dimension of “different

speakers” or “different types of speakers” and thus to address the problem of adaptation

to a new speaker in our framework.

A third shortcoming of our approach is that we start with sensorimotor (i.e. phonetic)

information during babbling training, and directly thereafter we extend this to phonemic

information for imitation training. From the viewpoint of natural speech acquisition, it

would be more realistic to start imitation on the basis of face-to-face communication sce-

narios, where the model can associate words with semantic categories rather than directly

with a (perfect) phonemic representation. There is some evidence showing that phonemic

information is not available at the earliest developmental stages, but rather emerges dur-

ing speech acquisition [42]. Thus, we will use sensorimotor and semantic information ra-

ther than sensorimotor and phonemic information for future training experiments. This

information could be used for speech acquisition if our model comprised a semantic level
Figure 8 25 × 25 phonetic map after imitation training as described in Results section. A model
neuron is marked with a phonemic transcription if the synaptic link weight between that model neuron of
the phonetic map and a model neuron of the phonemic map is strong (link weight > 0.8). An apostrophe
at the beginning of the syllable indicates that the syllable is stressed. Transcriptions are given in SAMPA
notation (Speech Assessment Methods Phonetic Alphabet).



Kröger et al. EPJ Nonlinear Biomedical Physics 2014, 2:2 Page 25 of 28
http://www.epjnonlinearbiomedphys.com/content/2/1/2
in addition to the sensorimotor level described in this paper (ibid.). Additionally, this

would expand our model towards word and utterance processing and thus more realistic

performance tests for production and perception could be performed, especially consider-

ing that speech perception is difficult to check at syllable level.

A fourth shortcoming of our approach is that we have no explicit modeling of time as

exists in spiking neuron models or more detailed rate models such as the neuroanatomi-

cally grounded Hebbian learning model developed by [8]. Time modeling would allow us

to avoid the zero-paddings which currently occur in our syllable-based representations of

motor plans and neural spectrograms. Furthermore, these approaches would allow the

processing of whole utterances rather than isolated syllables. It is a major goal to intro-

duce time as an explicit parameter into future versions of our model.

Appendix
Figures 8, 9, and 10 display the synaptic link weights of the same 25 × 25 phonetic map

resulting from training the 200 most frequent syllables of our children’s book corpus as
Figure 9 25 × 25 phonetic map after imitation training as described in Results section. Each model
neuron within this phonetic map displays all synaptic link weights towards the motor state map (white: no
connectivity, wij = 0; black; high connectivity, wij = 1). Thus, if one model neuron within the phonetic map
is maximal activated, the resulting motor plan state activation pattern is displayed here in the box
representing that model neuron.



Figure 10 25 × 25 phonetic map after imitation training as described in Results section. Each model
neuron within this phonetic map presents all synaptic link weights towards the auditory state map (white:
no connectivity, wij = 0; black; high connectivity, wij = 1). Thus, if one neuron within the phonetic map is
maximal activated, the resulting auditory state activation pattern is displayed here in the box representing
that model neuron.
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described in above. All three figures represent the speech knowledge stored as synaptic

link weights between the phonetic map and the phonemic map (Figure 8), between the

phonetic map and the motor plan state map (Figure 9), and between the phonetic map

and the auditory state map (Figure 10). Thus, Figure 8 presents all model neurons

within the phonetic map which represent a realization of a specific syllable (phoneme

regions), Figure 1B presents the knowledge concerning the production of a phonetic

realization (motor state for each realization) and Figure 1C indicates the knowledge of

how that realization sounds (auditory state for each realization).
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