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Abstract: Modeling speech processing in a biologically inspired way can be done by
using growing self-organizing maps. But this approach is highly abstract because
each “node” here represents an ensemble of “real” neurons, in our interpretation a
cortical column. Moreover neural spikes trains are not modeled in this approach.
Rather a mean rate of neural activation is taken as basic processing variable for each
node. In this paper the concept of growing self-organized maps is reviewed and its
neuroscientific relevance is discussed (i) from the viewpoint of spatial and temporal
integration (cortical columns and activity rates) and (ii) from the viewpoint of basic
neural principles like self-organization and associative learning in speech processing.

1 Introduction: SOMs and GSOMs

The synaptic associations between neurons are organized and modified during learning. Thus,
only a part of cortical and subcortical organization is pre-determined by our DNA, while a
main part of synaptic links especially at the level of the neocortex result from learning, i.e.
from our daily interaction with our environment. For example during babbling the toddler
learns sensorimotor associations from exploring random motor states. Later on, during
imitation of speech items produced by a caretaker (teacher), the toddler may be awarded for
correct or at least understandable word productions (reinforcement learning) but still in this
case the learning stimuli occur in a more or less random fashion.

An interesting concept, how the neocortex may organize these learning results (this know-
ledge) is the concept of self-organization, resulting from non-supervised learning, where the
adjustment of synaptic link weights mainly follows a “winner takes all” principle and where
the adaptation of link weights is always possible even during later stages of learning (neural
plasticity). A quantitative concept called “self-organizing maps” (SOMs), also known as self-
organizing feature maps was introduced by Kohonen [1-4]. Here, the self-organizing map in
most cases is realized as a 2D map, which could be interpreted as a highly abstract
representation of a cortical neural map. These maps highlight features, inherent to the training
items by a specific spatial ordering of states; e.g. vocalic states are ordered with respect to
phonetic dimensions like high-low or front-back; e.g. consonantal states are ordered with
respect to phonetic features like place and manner of articulation [5]. Self-organizing maps
can be seen as a nonlinear generalization of principal component analysis. Competitive
learning (“winner takes all” principle) is a further important characteristic for the adjustment
of link weights between a self-organizing map and its input/output maps [5].

A first main shortcoming of the concept of self-organizing maps may be its simplicity. In
these days, most computational or theoretical neuroscientists use spiking neuron approaches
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(e.g. [6]), where the temporal resolution is high (i.e. at the level of 1 ms) and where each
model neuron is assumed to represent a biological one (i.e. high spatial resolution). Moreover
the detailed spiking behavior of single neurons as well as the spike-train behavior of neuron
groups is modeled. In contrast, the concept of self-organizing maps, which already has been
developed during the 70" and 80™ of the last century, is different. Here “model neurons” or
“nodes” represent a whole ensemble of cortical neurons. Nodes are used as central processing
units and even neural activity is accumulated over time intervals (one processing step here
may represent 20 to 50 ms intervals). Thus, self-organizing maps belong to the group of
activation rate models. But it will be shown below that activation rate models and the concept
of “activation rates” as well as of “model neurons”, representing an ensemble of neighboring
biological neurons, can be interpreted quite concrete in biological terms [7].

A further shortcoming of the concept of self-organizing maps may be that the number of
model neurons for the self-organizing map needs to be predefined, which is biologically
implausible, because due to neural plasticity the number of neurons which are involved in the
formation of a self-organizing map should increase during learning in relation to the
increasing number of words or syllables which are learned. Thus, algorithms for training of
growing self-organizing maps (GSOMs) have been developed and it has been shown that
GSOMs have advantages in performance with respect to learning effort and feature
representation [8].

2 Biological Inspiration: Spatial Aspects

We hypothesize that each computational “node” within a 2D-self-organizing map represents
one or more (neighboring) cortical columns, because the ordering of features occurring in
SOMs and GSOMs are found as well in cortical maps (see also [25-29] in section 4 of this
paper). The concept of cortical columns introduced in 1957 by Mountcastle [9] has become a
very attractive concept for combining functional and anatomical aspects of the neocortex (for
a review see [10, 11]). Cortical columns here are defined as “basic information processing
elements of the cortex, with each column being responsible for analyzing a small range of
stimuli” ([11], p.7). Beyond this definition, which is focusing on sensory cortex (i.e. parts of
the cortex analyzing somatosensory cortex [9], visual cortex [12], or auditory cortex [13, 14]),
cortical columns have been found within motor cortex [15, 16] as well as within higher level
supra- or hypermodal and cognitive cortex regions [17].

In cortical columns, cortical layer 4 processes the input signal and the signal is forwarded to
output layers 2 and 3 by pyramidal cells [18]. Furthermore, columnar neural activity is
processed vertically (i.e. within a cortical column) by pyramidal cells in deep layers 5 and 6.
Inhibitory lateral (i.e. horizontal) cortical connections with other cortical columns within a
cortical map are established by interneurons, occurring within all cortical layers. In addition
some short range excitatory horizontal connections are formed by the neurons of layer 4 (see
[11], p. 7).

But the concept of cortical columns has been critically reviewed by other researchers with
respect to anatomical aspects [19] as well as with respect to functional aspects [20]. One
argument is the failure of finding discrete boundaries between columns in many cases, but the
fact of strong vertical connectivity and the fact of existence of input as well as output
function, to our opinion are sufficient as biological arguments for the concept of 2D-cortical
maps composed of “nodes” or “model neurons”. In addition, a horizontal connectivity within
one as well as from cortical column to other cortical columns has been reported [11]. Within a
cortical column, excitatory synaptic links can be assumed as well from the viewpoint of
“model neurons” in order to strengthen their activity, while synaptic connections towards
neighboring columns (neighboring model neurons) are mainly inhibitory form the viewpoint



of self-organizing maps in order to underpin the winner takes all principle (lateral inhibition
[3], pp. 177ff).

3 Biological Inspiration: Temporal Aspects

While spiking neuron models are capable of generating complex spike trains at the level of a
millisecond time scale, time representation is raw in neurocomputational rate models like self-
organizing and growing self-organizing maps. In the case of rate models the network and its
synaptic link weight values develop and/or change one time for each training steps. Therefore,
each training step represents one time step. Here an input stimulus is modeled by a specific
activation pattern of input neurons, which may result in a sum of spikes representing the brain
activity related to that input stimulus. The resulting change in link weights between input
layer and self-organizing map is influenced mainly by the fact whether a stimulus is awarded
or not, and thus the time window for stimulus activation and for the adaptation of synaptic
link weights with respect to a stimulus may last one or more seconds [21]. Thus time is not
represented directly within this network. Only a temporal succession of training items
(training stimuli) and a co-occurring temporal succession of changes of synaptic link weights
is modeled.

After learning, if the model is producing or perceiving a speech item (production or
perception mode of the network), a rate network can be used for calculating activation
patterns at the input level from winner neuron activation at the level of the self-organizing
map. But here as well no specific modeling of temporal aspects occurs. Here, each time step is
used to activate a SOM or GSOM neuron and subsequently a specific neural activation pattern
of a whole syllable or word [5]. If stimuli have an intrinsic temporal representation, this
intrinsic time is an inherent part of the neural input or output representation. A sequence of
time intervals is coded by a (spatial) sequence of model neurons as it may occur in working
memory (see our definition of neural representation of auditory states or spectrograms and our
neural representation of motor plans [22]).

Here the multilayer Hebbian-learning model of Garagnani et al. [7], leading to “Hebbian
neuronal circuits” as highly specific functional units, offers a neurobiologically more realistic
perspective for modeling sensorimotor aspects of syllables and words. This multilayer
Hebbian-learning model especially takes into account important neural functional principles
(e.g. neural excitation and inhibition and thus long-term potentiation (LTP) and long-term
depression (LTD)) in a less abstract, i.e. in a neurobiologically more realistic way as it is done
in SOM or GSOM theory.

Last but not least recurrent neural networks (rate based or spiking based) could bring more
neurobiological realism as well, because temporal features of sensory or motor stimuli can be
coded here intrinsically (intrinsic time representation [23, 24]).

4 Neural Self-Organization, Neural Plasticity, and Associative Learning

A major argument for biological realism of topology preserving cortical maps in speech
processing comes from studies which prove spatial ordering e.g. of phonetic features for
vowels as well as for consonants [25-29]. These topological aspects of speech sound ordering
with respect to phonetic sound features can be modelled using self-organizing maps [5, 30].
Moreover it has been shown that words can be organized very effectively with respect to their
semantic features by using self-organizing maps [31, 32]. The resulting self-organizing
phonetic as well as semantic maps vary locally during training due to the influence of new
learning items and thus show plasticity [33]. Even in the case of lower-level sensor maps —
reflecting tonotopy, retinotopy as well as somatotopy — neural plasticity can be modelled by



using self-organizing maps [34]. This feature of cortical topology preservation at high supra-
or hypermodal levels cannot be modelled currently by spiking neuron models.

Associative learning is one of our major learning principles and can be modelled by SOMs
and GSOMs if we do not take input training items just from one input domain — as is usually
done in the case of Kohonen’s SOMs and in the case of most GSOM applications — but from
two or more input domains, e.g. auditory, somatosensory and motor domain in parallel in the
case of speech processing [5]. In early phases of speech acquisition like babbling, this leads to
an association of motor with sensory states. Later on during imitation training this leads to an
association of sensorimotor states with phonemic states [5]. Thus, SOMs as well as GSOMs
not just lead to an ordering of states with respect to phonetic or semantic features (in case of
speech processing) but it occurs as well as an association of auditory, somatosensory, motor,
and phonemic representations at the level of the phonetic map. This main feature, i.e. the
capability of associating states from sensory and motor domains is a further argument for the
biological plausibility of SOMs and GSOMs, because no spiking neuron model exists, which
clearly indicates this feature.

In the case of spiking neuron models, a first approach is available to model learning of
associations between sensory or motor stimuli and their reward, if these stimuli are rewarded
in a communication situation. Reinforcement learning can be modelled here by associating a
sensory or motor stimulus with a reward stimulus [35, 36]. This method is not directly
comparable to the situation of a direct association of auditory and motor states as described
above for SOMs and GSOMs, but gives a deep insight in behaviour of long-term potentiation
(LTP) as well as long-term depression (LTD) resulting from spike-timing-dependent plasticity
(STDP) of synaptic connections as well as resulting from dopamine modulations, where the
later modulation is mainly responsible for long-term effects with respect to associating a
motor or sensory state with a reward stimulus.

5 Discussion and Conclusions

If the goal is the development of a large-scale model for speech acquisition, speech
production, and speech perception, rate models like SOMs or GSOMs seem to be a reasonable
solution. But its neurobiological plausibility is questionable because of its high degree of
abstraction. These models are in a way abstract because (i) they use abstract “model neurons”
(or “nodes”), because (ii) no specific inherent time representation is given, and because (iii)
no explicit modelling of neural inhibition is done. But these models are capable to represent
sensory input and motor output in a reasonable way and are capable to learn and store
sensorimotor skills (speech action repository [5, 30]) as well as lexical knowledge (e.g.
semantic knowledge [31-33]). They are abstract but could be interpreted carefully as biolo-
gically motivated to a specific degree, because they incorporate important neurofunctional
principles like self-organization, associative learning, Hebbian learning, adaptation, and
neural plasticity.

Currently there still seems to be a huge gap for replacing these self-organizing map models by
large-scale spiking neuron models. First approaches are still available [24, 36] but these
approaches are still far away from modelling the complex interactions between speech
learning (acquisition), speech production, and speech perception as it is already possible by
using neural rate models, especially SOM- and GSOM-based neural models.
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