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Abstract. Background: Development of the feedback loop of speech production starts  
during the babbling phase of speech acquisition.  Within the first  year of  lifetime  
toddlers acquire the ability of imitating auditory stimuli, i.e. they acquire the ability  
of associating speech-like sensory and motor states.  Method: Self-organizing maps 
and one-layer feed-forward networks were used for modeling this learning behavior  
within  a  neural  model  of  speech  production.  The  model  includes  auditory,  
proprioceptive, tactile, and motor representations for static as well as for dynamic  
speech-like events,  i.e.  proto-vocalic and proto-consonantal  states.  A three-dimen­
sional articulatory speech synthesizer serves as a front-end device for generating  
high quality sensory signals.  Results: Self-organizing maps are useful for modeling  
auditory-to-somatosensory as well as for auditory-to-motor mappings. The somato­
sensory-to-motor mapping is modeled successfully using a one-layer feed-forward  
net. Conclusion: The neural model of speech production introduced here is capable  
of describing learning during the babbling phase of speech acquisition. The model is  
now ready for building up the mental syllabary, i.e. for processing sounds, syllables  
and words of a specific language. 

1. Introduction

Young children use their articulatory organs for sound production from the first day of their 
lifetime. During the first year of life children produce non-speech acoustic signals like crying, 
laughter,  moaning  and  vegetative  sounds  (e.g.  couching,  sneezing,  burping).  But  they  also 
produce speech-like sounds – i.e. speech-like phonation, vowel-like articulation, and primitive 
speech-like  articulatory movements  (Oller  et  al.  1999).  Thus  from the  viewpoint  of  speech 
acquisition the first year of lifetime is very important. It is called babbling phase or prelingu­
istic phase of speech acquisition since the toddler learns to produce first static and dynamic 
articulatory primitives – here called “proto-vocalic”, “proto-consonantal”, or “proto-gestural” 
articulation.  Within  this  year  the  toddler  already  learns  to  associate  auditory  patterns  (i.e. 
formant patterns) with articulatory or motor states. 

This paper presents a neural model of speech production capable of reflecting these 
early processes of speech acquisition. The paper focuses on the development of associations 
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between auditory and  motor representations, i.e. on the auditory-to-motor mappings for proto-
vocalic  and proto-consonantal  articulatory gestures. Two different  setups  for  the  motor and 
sensory maps of the feedback subsystem were tested. 

2. Brief outline of the neural model

Neural  models  of  speech  production  comprise  a  feedback  subsystem and  a  feed-forward  
subsystem (Guenther et al. 2006). The feed-forward subsystem directly associates states of the 
speech sound map – i.e. neural representations of sounds, syllables or words – with their motor 
states.  The  feedback  system  is  very  complex.  Here,  the  auditory  and  somatosensory  state 
activated by the speech sound map are compared with the online sensory signals produced by 
the current state of the speech organs. The occurring difference signal is used for updating or 
correcting the current motor state.

Our neural model of speech production comprises auditory, somatosensory, and motor 
maps, the appropriate mappings, subcortical and peripheral processing of signals, and a high-
quality 3D-articulatory-acoustic speech synthesizer  as a front-end system for producing high 
quality tactile, proprioceptive, and auditory feedback signals (Kröger et al. 2006a and Fig. 1). 
The sensory-to-motor mappings evolve during training using a set of static or dynamic articu­
latory states. First results of training the neural model using one-layer feed-forward artificial 
networks were collected (Kröger et al. 2006a).  During the babbling phase of speech acquisition 
mainly the feedback control subsystem evolves. During the imitation phase of speech acqui­
sition the feed-forward control subsystem becomes more and more relevant. 

                                                 model A                                                 model B
Figure 1. Two different models of the neural feedback subsystem (A and B) as a part of a neural control 
model of speech production.  

In our earlier simulation study (Kröger et al. 2006a) each model parameter is represented by a 
single neuron. Thus the parameter value is represented simply by the degree of activation of 
this neuron. The neural maps of our current approach indicate two different kinds of vector 
representations. Within these representations each model parameter is encoded in a complex 
way by a set of two or more neurons. Furthermore the previously used simple one-layer feed-
forward networks are replaced by self-organizing maps (SOM's, Kohonen 2001) for nearly all 
mappings. These SOM-networks are biologically more realistic in the case of modeling cortical 
sensory mappings.

Our  neural  feedback  models  (Fig.  1)  comprise  auditory,  somatosensory,  and  motor 
maps and the related mappings which co-activate the appropriate sensory and motor states. The 
maps and mappings of the models are based on parameters mainly defined by the front-end 3D-



articulatory-acoustic speech synthesizer (Birkholz et al. 2006). The synthesizer is controlled by 
a set of 10 articulatory parameters  (Fig. 2 and Tab. 1) and provides a set of 10 tract variable 
parameters, a set of 9 tactile parameters, and a set of 3 auditory parameters (Fig. 3 and Tab. 1). 
These  parameters  and  representations  are  discussed  in  detail  in  Kröger  et  al.  (2006a).  In 
addition, the current model provides an aerodynamic state parameter describing the pressure 
built-up which occurs in the vocal tract in the case of an oral obstruction.   

Figure 2. Articulatory parameters and geometrical 
grid-representation of the 3D model (see also Tab. 
1).  

Figure 3. Tract-variable, tactile, and auditory para­
meter  sets  generated  by  the  articulatory-acoustic 
model (see also Tab. 1).  

Table  1. Model  parameters  for  articulatory, 
tract-variable, and tactile states (see also Fig. 
2).  The  model  parameters  for  the  auditory 
state are the bark-skaled formant values F1, 
F2 (, and F3).  

3. Somatosensory-to-motor mappings 

Within  feedback model  A the learning of  proto-vocalic  or  proto-consonantal  articulation  is 
preceded by learning the spatial-to-joint coordinate mapping (m3, Fig. 1a). The spatial-to-joint 
mapping is also referred to as the tract variable to articulatory state transformation numerically 
solved in the task-dynamic approach (Saltzman et al. 1989). In our approach the tract variable  
representation is  labeled synonymously as the  proprioceptive representation,  since it  repre­



sents  the  location  of  an  end-articulator  within  the  cranial  reference  system (Fig.  1a).  This 
representation is on the edge between motor and sensory representations. 

This  proprioceptive representation comprises 2 or 3 neurons per tract variable para­
meter depending on the number of states per parameter used in the current training set (Fig. 4). 
The training set is described in detail in Kröger et al. (2006b). Each state – i.e. each parameter 
value occurring during the training phase – is represented by one neuron. The neuron which 
represents  a  distinct  parameter  value is  activated  maximally,  if  the  parameter  indicates  this 
value. This kind of neural coding is called “map representation” (Bullock et al. 1993).   

     

Figure  4. The  proprioceptive-to-
motor network. 

The articulatory representation synonymously called motor representation or joint coordinate  
representation  (Fig.  4)  –  comprises  4  neurons  for  each  articulatory  parameter.  These  four 
neurons can be interpreted as a pair of 2 neurons each. Each pair of neurons represents the 
agonist-antagonist muscular activation for each articulatory parameter. The two neurons of each 
pair of neurons are activated consecutively for parameter values from 0 to 0.5 and from 0.5 to 
1, since only groups of neurons (in this case only 2 neurons are forming the group)  are capable 
of modeling the large dynamic range occurring for muscular activation (Kandel et al. 2000).

The  tactile  representation (Fig.  3)  comprises  2  neurons  per  tactile  parameter.  The 
neurons  within  each  pair  are  activated  consecutively  for  increasing  parameter  values  (see 
above). The parameter value 1 represents the state of complete contact (full closure) while the 
parameter value 0 represents the state of no contact. 

 The  proprioceptive-to-motor mapping (m3, Fig. 1a and Fig. 4) is implemented by a 
one-layer feed-forward network exhibiting 1000 link weights connecting 25 input neurons (pro­
prioceptive map) with 40 output  neurons (motor map). Training the proprioceptive-to-motor 
mapping – i.e. adjusting the link weights of this mapping – was performed using a min-max-
combination training set comprising 4608 patterns (Kröger et al. 2006b). 5000 cycles of batch 
training were sufficient for reaching a mean error of 9.1% for predicting an articulatory state. 
The resulting mapping is capable of modeling motor equivalence (Kröger et al. 2006a and b). 

The somatosensory-to-motor mapping (m5, Fig. 1b) is also implemented using a one-
layer feed-forward network. The net exhibits 1800 link weights connecting 45 input neurons 
(proprioceptive and tactile map, Fig. 1b) with 40 output  neurons (motor map). Training the 
proprioceptive-to-motor mapping is performed using the same min-max-combination training 
set (Kröger et al. 2006b). 5000 cycles of batch training were sufficient for reaching a mean 
error of 10.6% for predicting an articulatory state.  The resulting mapping is also capable of 
modeling motor equivalence (Kröger et al. 2006a). Thus, both mappings (m3 and m5, Fig. 1a 
and Fig. 1b) behave similar. Despite the fact that the size of the input representation increases 
quantitatively by nearly a factor 2, the error of the somatosensory-to-motor mapping (m5) is 
only slightly higher than the error of the proprioceptive-to-motor mapping (m3).  



4. Learning proto-vocalic articulation

The auditory representation comprises 2 neurons per auditory parameter. The activation of one 
neuron directly represents the (relative) formant value Fi+ and Fi- = 1 – Fi+ (i = 1, 2, or 3 and 
range of Fi- and Fi+ is 0...1). This representation was chosen in order to guarantee a balanced 
neural activation for each formant parameter value (see also Guenther et al. 1996). 

Within the  neural  feedback models  A and B the auditory-to-motor  mapping is  sub­
divided into an auditory-to-proprioceptive mapping and a proprioceptive-to-motor mapping (m1 
and m3, model A, Fig. 1a)  and an auditory-to-somatosensory mapping and a somatosensory-to-
motor mapping (m4 and m5, model B, Fig. 1b). In addition, the neural feedback model B pro­
poses a direct auditory-to-motor mapping (m6, model B, Fig. 1b). All three paths were tested. 

In order to get useful training results it was necessary to restrict the amount of possible 
articulatory vowel-like (or proto-vocalic) states with respect to a set of 3 basic lingual gestures 
(front-high, back-high, and low) and with respect to two labial gestures (rounded and spread). 
These basic gestures can be defined easily within the proprioceptive representation. Variation 
of lip rounding covaried with the lingual front-back dimension resulting in a two dimensional 
articulatory  proto-vocalic  space.  540  proto-vocalic  training  patterns  were  generated  for 
covering the whole proto-vocalic space (Fig. 5). 

Figure  5. Space  of  proto-vocalic  states  given  in  proprio­
ceptive  dimensions  (tongue  body  horizontal  vs.  vertical 
position TBx and TBy, see Tab. 1) and display of the set of 
540 training patterns.   

In all  three cases  self-organizing maps  (SOM's, Kohonen 2001) were used for modeling the 
auditory-to-proprioceptive (m1, Fig. 1a), the auditory-to-somatosensory (m4, Fig. 1b), and the 
auditory-to-motor  mapping  (m6,  Fig.  1b)  respectively.  The  self-organizing  map consists  of 
10x10 neurons in each case (Fig. 6). Only the input representation differs with respect to the 
actual mapping (m1, m4, or m6). It should be noted that auditory as well as somatosensory and 
motor neurons occur side by side as input of the SOM's in in terms of Kohonen (2001).  

Figure 6. Self-organizing map (10x10 neu­
rons)  and  the  appropriate  network  for 
different  neural  input  representations.  The 
input  representation  is  only  specified  for 
auditory.  “Other”  means  “proprioceptive”  in 
the case of m1 (Fig. 1a), “proprioceptive plus 
tactile”  in  the  case  of  m4  (Fig.  1b)  and 
“motor” in the case of m6 (Fig. 1b).

In the case of the auditory-to-proprioceptive mapping (m1, Fig. 1a) 25 proprioceptive neurons 
plus 4 auditory neurons (F1 and F2) lead to 29 input neurons and thus to 2900 link weights 



which are adjusted during training. 200 cycles per 540 training patterns give 108.000 training 
steps. Standard SOM learning algorithms were used (random initialization; update radius = 5 
neurons; rectangular neighborhood function; update radius decay factor = 0.999; learning rate 
factor = 0.1; learning rate decay factor = 0.99). The mapping was trained 10 times. In all cases 
the mapping was not capable of producing stable proto-vocalic states. Especially in the case of 
proto-vocalic corner states ([i], [a], and [u]) oral closures were not avoidable. 

Figure 7. Display of 
the  SOM-weights 
for each of the 10 x 
10  neurons  of  the 
self-organizing  map 
(a)  within  the  TBx-
TBy-space,  i.e.  pro­
prioceptive  space, 
and  (b)  within  the 
F1-F2-space, ie. au­
ditory  space  (case: 
mapping m4)    

Figure  8. Display  of  the  F1-F2-SOM-weights  for 
each  of  the  10x10 neurons  of  the  self-organizing 
map using bar charts. The arrows are described in 
the text (case: mapping m4).    

In the case of the auditory-to-somatosensory mapping (m4, Fig. 1b) 45 somatosensory neurons 
plus 4 auditory neurons lead to  49 input  neurons and thus to 4900 link weights  which are 
adjusted  during  training.  The  training  patterns  and  the  number  of  training  cycles  are  as 
described  above for  m1. Standard  SOM learning  algorithms  were  used  with  the  parameter 
settings given above. This mapping does not exhibit  the shortcomings stated above for  m1. 
Stable  proto-vocalic  articulatory  states  were  generated  on  the  basis  of   the  auditory 
representations (i.e. F1 and F2). Moreover the resulting mapping indicates typical features of 
SOM's: The topology of the two-dimensional self-organizing map reflects the topology of the 
training items within  each  two dimensional  subspace  of  the  input  parameters  (Fig.  7).  The 
SOM-F1-F2-weights are  also displayed – ordered with respect to the SOM-neurons – using bar 
charts (Fig. 8). It can be seen, that the corner-states (front-high, back-high and low or [i], [u], 
and  [a])  indicated  by  the  F1-F2-vectors  (0,  1),  (0,  0),  and  (1,  0.3)  respectively  are  well 
represented within the 10x10-SOM. Additionally smooth transitions occur from [u] to [a] as 
well as from [i] to [a] (arrows in Fig. 8). 

In the case of the direct  auditory-to-motor mapping  (m6, Fig. 1b) 40 motor neurons 
plus 4 auditory neurons lead to  44 input  neurons and thus to 4400 link weights  which are 
adjusted during training. The training patterns  and the number of  training cycles  remain as 
stated above for m4. Standard SOM learning algorithms were used with the parameter settings 
given above. Stable proto-vocalic articulatory states were predicted very precisely on the basis 
of   the  auditory  representation  using  this  net  (prediction  error  smaller  than  1%).  Also  the 



topology of the two-dimensional self-organizing map reflects the topology of the training items 
within each two dimensional subspace of the input parameters as given above for m4. 

5. Learning proto-consonantal articulation
Proto-consonantal articulation is defined here as toddlers first efforts in producing articulatory 
movements during the babbling phase. Proto-consonantal articulation comprises closing as well 
as opening proto-gestures, i.e. first VC- and CV-like articulations. The auditory representation 
is given by the formant pattern – i.e. by the formant transitions of the first 3 formants occurring 
during the closing or opening gesture (Kröger et al. 2006a). The  motor representation of the 
closing or opening gestures comprises three groups of parameters: (i) The closure forming or 
gesture executing end-articulator (i.e. labial, apical, or dorsal), (ii) the somatosensory (or high-
level motor) representation of the proto-vowel target and of the proto-closure target defining 
the begin and end of the gesture, and (iii) parameters defining the duration and the degree of 
realization of the gesture. For the definition of the motor state of a gesture it is reasonable to 
use somatosensory representations and not low level motor representations – as done in the 
case of proto-vocalic articulation – since the motor control of dynamically defined gestures is 
less ambiguous on the level of tract variables than on the articulatory or lower motor level.  

Figure 9. (i) Chart bar display of 
SOM  link  weights  for  the  para­
meter  “gesture  executing  end-
articulator” of the motor represen­
tation  (from  left  to  right:  “labial”, 
“apical”,  “dorsal”,  see  light  gray 
bars)  and  (ii)  display  of  formant 
patterns in Bark (see black trajec­
tories)  for  the  auditory  represen­
tation  after  training  of  a  10x10 
SOM for  opening  proto-gestures. 
The  absolute  duration  of  the 
gestures  varies  since  articulator 
velocity was kept constant. 

A 10x10 SOM was used for training the  auditory-to-motor mapping  in the case of opening 
proto-gestures. The training set for opening proto-gestures consists of 6x17 patterns combining 
1 labial, 2 apical, and 3 dorsal  proto-consonantal target configurations with 17 proto-vocalic 
starting configurations covering the whole proto-vocalic space (Fig. 5). Training was performed 
using standard SOM training parameter adjustments. The SOM weights of the auditory repre­
sentation (i.e. the gestural formant transitions of F1, F2, and F3) and 3 SOM weights of the 
high-level motor representation – indicating the motor parameter “gesture executing end-articu­
lator” – are displayed in Fig. 9. It can be seen, that the SOM is capable of separating the 3 basic 
types of gestures i.e. labial, apical, and dorsal gestures. Moreover the SOM is capable of pre­
dicting the motor representation of an opening gesture on the basis of its auditory representa­
tion. 

6. Results and conclusions

The neural feedback loop of speech production can be modeled successfully using relatively 
simple neural representations of sensory and motor states. One-layer feed-forward networks are 



used  for  modeling  the  somatosensory-to-motor  mapping.  Self-organizing  maps are  used  for 
modeling the auditory-to-somatosensory as well as the auditory-to-motor mapping. Two results 
of this work are important: (i) The prediction of proto-vocalic motor states from auditory states 
is much more precise by using control model B (mapping m6, Fig. 1) since in model A mapping 
m1 is succeeded by mapping m3 indicating an overall mean error of around 10% for predicting 
a motor state.  Thus a direct  auditory-to-motor mapping is advantageous for modeling proto-
vocalic  articulation.  (ii)  Integrating  tactile  and  proprioceptive  information  into  one  single 
somatosensory map is advantagous in the case of vocalic as well as consonantal articulation. In 
the case of proto-vocalic articulation vocal tract closures can be avoided within the auditory-to-
somatosensory mapping. In the case of proto-gestural VC-articulation tactile information – i.e. 
labial, apical, dorsal closure – can be predicted easily from auditory information – i.e. formant 
transitions.  All  in  all  the  model  is  now ready  for  building  up  a  mental  syllabary,  i.e.  for 
processing sounds, syllables and words of a specific language. 
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