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Abstract

The limitation in performance of current speech synthesis and speech recognition systems may result from the fact that these systems
are not designed with respect to the human neural processes of speech production and perception. A neurocomputational model of
speech production and perception is introduced which is organized with respect to human neural processes of speech production and
perception. The production–perception model comprises an artificial computer-implemented vocal tract as a front-end module, which
is capable of generating articulatory speech movements and acoustic speech signals. The structure of the production–perception model
comprises motor and sensory processing pathways. Speech knowledge is collected during training stages which imitate early stages of
speech acquisition. This knowledge is stored in artificial self-organizing maps. The current neurocomputational model is capable of pro-
ducing and perceiving vowels, VC-, and CV-syllables (V = vowels and C = voiced plosives). Basic features of natural speech production
and perception are predicted from this model in a straight forward way: Production of speech items is feedforward and feedback con-
trolled and phoneme realizations vary within perceptually defined regions. Perception is less categorical in the case of vowels in compar-
ison to consonants. Due to its human-like production–perception processing the model should be discussed as a basic module for more
technical relevant approaches for high-quality speech synthesis and for high performance speech recognition.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Current speech recognition systems are easily outper-
formed in the case of (i) non-restricted vocabulary, (ii) if
the speaker is not well-known by the system and (iii) if noise
reduces the speech signal quality (e.g. Benzeghiba et al.,
2007; Scharenborg, 2007). Current corpus-based speech syn-
thesis systems are limited as well, especially concerning (i)
flexibility in modeling different speaker and voice character-
istics and concerning (ii) segmental as well as prosodic natu-
ralness (e.g. Clark et al., 2007; Latorre et al., 2006). These
limitations may be attributed to the fact that speech recogni-

tion as well as speech synthesis systems currently are not
modeled with respect to the basic human neural processes
of speech production and speech perception.

A variety of brain imaging studies clarify the role of dif-
ferent subcortical and cortical brain regions for speech pro-
duction (e.g. Murphy et al., 1997; Kuriki et al., 1999; Wise
et al., 1999; Bookheimer et al., 2000; Rosen et al., 2000;
Scott et al., 2000; Benson et al., 2001; Huang et al., 2001;
Blank et al., 2002; Vanlancker-Sidtis et al., 2003; Acker-
mann and Riecker, 2003; Hillis et al., 2004; Shuster and
Lemieux, 2005; Kemeny et al., 2005; Riecker et al., 2006;
Sörös et al., 2006) as well as for speech perception (e.g. Bin-
der et al., 2000; Hickok and Poeppel, 2000; Fadiga et al.,
2002; Wilson et al., 2004; Boatman, 2004; Poeppel et al.,
2004; Rimol et al., 2005; Liebenthal et al., 2005; Uppenk-
amp et al., 2006; Zekveld et al., 2006; Obleser et al.,
2006, 2007). Other studies focus on the interplay of speech
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production and perception (Heim et al., 2003; Okada and
Hickok, 2006; Callan et al., 2006; Jardri et al., 2007) but
only few among them introduce functional neural models
which explain and emulate (i) the complex neural sensori-
motor processes of speech production (Bailly, 1997; Guen-
ther, 1994, 1995, 2006; Guenther et al., 2006) and (ii) the
complex neural processes of speech perception including
comprehension (McClelland and Elman, 1986; Gaskell
and Marslen-Wilson, 1997; Luce et al., 2000; Grossberg,
2003; Norris et al., 2006; Hickok and Poeppel, 2004, 2007).

It is the aim of this paper to introduce a biologically
motivated approach for speech recognition and synthesis,
i.e. a computer-implemented neural model using artificial
neural networks, capable of imitating human processes of
speech production and speech perception. This produc-
tion–perception model is based on neurophysiological
and neuropsychological knowledge of speech processing
(Kröger et al., 2008). The structure of the model and the
process of collecting speech knowledge during speech
acquisition training stages are described in detail in this
paper. Furthermore it is described how the model is capa-
ble of producing vowels and CV-syllables and why the
model is capable of perceiving vowels and consonants
categorically.

2. The structure of the neurocomputational model

While the structure of this neurocomputational model is
based on neurophysiological and neuropsychological facts
(Kröger et al., 2008), the speech knowledge itself is gathered
by training artificial neural networks which are part of this
model (Kröger et al., 2006a,b). The organization of the
model is given in Fig. 1. It comprises a cortical and a sub-
cortical–peripheral part. The cortical part is subdivided
with respect to neural processing within the frontal, the
temporal, and the parietal cortical lobe. Functionally the
model comprises a production and a perception part. In
its current state the model excludes linguistic processing
(mental grammar, mental lexicon, comprehension, concep-
tualization) but focuses on sensorimotor processes of
speech production and on sublexical speech perception,
i.e. sound and syllable identification and discrimination.

The production part is divided into feedforward and
feedback control (see also Guenther, 2006). It starts with
the phonemic representation of a speech item (speech
sound, syllable, word, or utterance) and generates the
appropriate time course of articulatory movements and
the appropriate acoustic speech signal. The phonemic rep-
resentation of a speech item is generated by higher level lin-

Fig. 1. Organization of the neurocomputational model. Boxes with black outline represent neural maps. Arrows indicate processing paths or neural
mappings. Boxes without outline indicate processing modules. Grey letters and grey arrows indicate processing modules and neural mappings which are
not computer-implemented in the current version of the model.
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guistic modules (Levelt et al., 1999; Dell et al., 1999; Inde-
frey and Levelt, 2004) subsumed as widely distributed fron-
tal–temporal procedural and declarative neural processing
modules (Ullman, 2001; Indefrey and Levelt, 2004) which
are not specified in detail in this model. Subsequently each
phonologically specified syllable (i.e. a phonemic state; a
neural activation pattern on the level of the phonemic
map) is processed by the feedforward control module. In
the case of a frequent syllable, the sensory states (auditory
and somatosensory state) and the motor plan state of the
syllable (which are already learned or trained during speech
acquisition; see below) are activated via the phonetic map.
The phonetic map (Fig. 1) can be interpreted as the central
neural map constituting the mental syllabary (for the con-
cept of mental syllabary, see Levelt and Wheeldon, 1994;
Levelt et al., 1999). For each frequent syllable a phonemic
state initiates the neural activation of a specific neuron
within the phonetic map, which subsequently leads to acti-
vation patterns of the appropriate sensory states and the
appropriate motor plan state. In the case of infrequent syl-

lables the motor plan state is assembled within the motor
planning module on the level of sub-syllabic units, e.g. syl-
lable constituents like syllable onset and syllable rhyme or
single speech sounds (Varley and Whiteside, 2001). This
path is not implemented in our model at present. On the
level of the motor plan map a high level motor state (motor
plan) is activated for each speech item under production
(current speech item). This high level motor state defines
the temporal coordination of speech gestures or vocal tract

action units (Goldstein et al., 2006; Saltzman and Munhall,
1989; for a general description of goal-directed action
units, see Sober and Sabes, 2003; Todorov, 2004; Fadiga
and Craighero, 2004). The motor plan of a speech item is
processed by the motor execution module in order to define
the spatio-temporal trajectories of articulator movements.
Thus the motor execution module calculates the concrete
specification of each speech gesture on the level of the pri-

mary motor map (cf. Ito et al., 2004; Sanguineti et al., 1997;
Saltzman, 1979; Saltzman and Munhall, 1989; Saltzman
and Byrd, 2000). For example, a labial closing gesture
involves coordinated movement of at least the lower jaw,
the lower and upper lips. Thus each of these articulators
must be controlled synergetically for the realization of a
speech gesture. Subsequently the movement of an articula-
tor is executed by activating the motor units controlling
this articulator via the neuromuscular processing module.

The (lower level) primary motor map comprises 10 artic-
ulatory parameters (Kröger et al., 2006b). Each articula-
tory parameter value is coded by two neurons with
complementary activation (see below) leading to 20 neu-
rons to encoding the primary motor commands for each
point in time. The conversion of physical parameter values
(e.g. displacement of an articulator) into neuromotor acti-
vation patterns is done (i) by mapping the physical dis-
placement range for each parameter onto a neural
activation range [0,1] (i.e. no activation to full activation
of a neuron) and (ii) by defining two neurons for each

parameter with complementary activation (a2 = 1 � a1) in
order to hold the overall activation a (a = a1 + a2) constant
(=1) for each parameter value. The size of the (higher level)
motor plan map depends on the length of the utterance
under production. In the case of V-, CV-, and VC-items
three vocalic higher level parameters (high–low, front–
back, rounded–unrounded) and four higher level conso-
nantal parameters (labial, apical, dorsal, exact closing posi-
tion) are controlled. These vocalic parameters and the
consonantal parameter closing position are encoded using
two neurons with complementary activation each, while
the three remaining consonantal parameters are encoded
by one neuron each in order to reflect the activation of a
specific vocal tract organ. Thus the motor plan map for
V-, CV-, and VC-items consists of 11 neurons. Since a
motor plan encodes a motor or sensory V-, CV-, or VC-
item of a transition for C (encoded by four time labels)
and a steady state portion for V (encoded by one time
label) the (lower level) primary motor state of these items
is encoded by five consecutive time labels. Thus the appro-
priate number of primary motor map neurons for a whole
speech item is 5 � 20 = 100 neurons plus 10 neurons for
coding five time intervals describing the temporal distance
from label to label.

A computer-implemented numerical articulatory vocal

tract model generates the time course of vocal tract geom-
etries and subsequently the acoustic vocal tract model gen-
erates the acoustic speech signal. A three-dimensional
articulatory–acoustic model is used here which is capable
of generating high-quality articulatory and acoustic speech
signals (Birkholz and Jackèl, 2004; Birkholz and Kröger,
2006, 2007; Birkholz et al., 2006, 2007 and Kröger and
Birkholz, 2007). These articulatory and acoustic signals
are used for feedback control.

The articulatory and acoustic signals generated by feed-
forward control are continuously monitored or controlled.
For this feedback control the articulatory and acoustic sig-
nals are converted into neural signals by auditory and
somatosensory (i.e. tactile and proprioceptive) receptors.
Somatosensory feedback signals (relative positions of artic-
ulators to each other and position and degree of vocal tract
constrictions, see Saltzman and Munhall, 1989; Shadmehr
and Mussa-Ivaldi, 1994; Tremblay et al., 2003; Nasir and
Ostry, 2006) are used for controlling motor execution. In
addition sensory (i.e. somatosensory and auditory) signals
are converted into higher level cortical sensory states, which
represent the current speech item. These auditory and
somatosensory (feedback) states of a currently produced
speech item are processed by comparing them with the
appropriate prelearned auditory and somatosensory state,
activated by feedforward control before the current speech
item is produced. This comparison is done on the level of
the somatosensory and auditory processing modules. If
the prestored (or feedforward) sensory state and the feed-
back sensory states indicate a reasonable difference an
error signal is activated for correcting the motor plan dur-
ing the ongoing feedforward control.
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The conversion of physical or psychophysical sensory
parameter values (e.g. bark scaled formant values) into
neural activation patterns is done (i) by mapping the whole
physical parameter range onto the ‘‘neural” range [0, 1] (i.e.
no activation to full activation of a neuron) and (ii) by
defining two neurons per parameter with complementary
activation (see above for the primary motor map). Since
auditory states are processed as whole patterns, parameter
values for our V-, CV-, and VC-items (see above) are
obtained at five positions (labels) in the acoustic signal.
Three formants were processed leading to 3 � 5 = 15
parameter values and thus to 30 neurons per item for the
auditory state map. 10 proprioceptive and nine tactile
parameters were processed (Kröger et al., 2006b) leading
to 19 parameter values and thus 28 neurons for each item.
Only one tactile and proprioceptive state is coded for the
whole speech item representing the gestural target region
of the vocalic part in the case of a V-item and representing
the gestural target regions of the vocalic and the consonan-
tal part in the case of VC- or VC-items (overlay of tactile
and proprioceptive patterns).

The perception part of the neurocomputational model
starts from an acoustic speech signal, generated by an
external speaker (Fig. 1). This signal is converted into neu-
ral signals by auditory receptors and is further processed
into a cortical higher level auditory signal via the same
auditory pathway that is used for the feedback control of
speech production (self-productions). Speech perception
comprises two pathways (cf. Hickok and Poeppel, 2004,
2007). The auditory-to-meaning pathway (ventral stream)
directly activates neural states within the mental lexicon
by the high level cortical auditory state for a speech item
(e.g. a word). This pathway is not included in our model,
since high level mental lexical representations are out of
the scope of this study. The auditory-to-motor pathway

(dorsal stream) activates the phonetic state of the current
speech item (e.g. sound or syllable) within the cortical fron-
tal motor regions. This pathway is included in our model
and it will be shown below that this pathway is capable
of modeling categorical perception of speech sounds and
is capable of modeling differences in categorical perception
of vowels and consonants.

The structure of the neurocomputational model differen-
tiates neural maps and neural mappings. Neural maps are
ensembles of neurons which represent the phonemic, pho-
netic, sensory or motor speech states. These maps are capa-
ble of carrying states of different speech items by different
neural activation patterns. These activations change from
speech item to speech item under production or perception.
Neural mappings represent the neural connections between
the neurons of neural maps (Fig. 2). These connections can
be excitatory or inhibitory. The degree of excitatory or
inhibitory connection is described by link weight values.
These values wij characterize the neural connection between
each pair of neurons. They define the degree of activation
of a connected neuron bj within a neural map 1 (comprising
M neurons j = 1, . . . ,M) resulting from the degree of acti-

vation of all connecting neurons ai within a neural map 2
(comprising N neurons I = 1, . . . ,N) (see Eq. (1) and
Fig. 2).

bj ¼ actfunc
XN

i¼1

aiwij

 !
for j ¼ 1; . . . ;M ð1Þ

Here actfunc is the activation function (a sigmoid function
in the case of our modeling; see Zell, 2003) which repre-
sents the total activation of neuron bj in map 1 as function
of the sum of activations from all neurons i within map 2.
The link weight values wij are limited to the interval
[�1,+1] (i.e. maximal inhibitory to maximal excitatory link
weight value).

The link weight values reflect the whole knowledge
inherent in the training data and thus the knowledge gath-
ered during the training procedures. Link weight values are
adjusted during training stages, i.e. during speech acquisi-
tion stages (see below). They are allowed to be modified
continuously in order to reflect new knowledge gained over
life time.

One-layer feedforward networks (Fig. 2) are of limited
power and are used in our model exclusively for calculating
articulatory joint-coordinate parameters from articulatory
tract-variable parameters (cf. Kröger et al., 2006c). In this
paper we will focus on the central phonetic map and the
multilateral co-activation of phonemic states, sensory
states, and motor plan states via the phonetic map. This
multilateral co-activation is achieved by using self-organiz-
ing maps or networks (Kohonen, 2001 and Fig. 3). Each
neuron of the central self-organizing map (i.e. the phonetic
map) represents a speech item. Different phonetic submaps
(i.e. different parts within the phonetic map) are defined for
each class of speech items, i.e. for vowels, for CV-, and for
VC-syllables. Multilateral co-activation of phonemic, sen-
sory, and motor plan states for a speech item via the pho-
netic map means that an activated neuron of the phonetic
map (representing a currently perceived or produced
speech item) leads to a co-activation of neural activation
patterns within the phonemic, motor plan, or sensory side

Fig. 2. One-layer feedforward network connecting two neural maps 1 and
2. Grey lines indicate the neural connections connecting each neuron of
map 1 with each neuron of map 2.
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layer maps representing this current speech item. The set of
link weight values of the connections between all neurons
of the phonemic, motor plan, or sensory side layer map
and a neuron within the central phonetic map characterize
the phonemic, motor plan, or sensory state of the speech
item represented by this neuron within the phonetic map.
Activation patterns of neurons within the side layer maps
induced by an activation pattern of the phonetic map as
well as activation patterns of the phonetic map induced
by an activation pattern of one of the side layer maps are
calculated in the same way as it is described above for sim-
ple one-layer feedforward networks (Eq. (1)).

The structure of the neurocomputational production–
perception model introduced here is based on the structure
of the DIVA model introduced by Guenther (2006) and by
Guenther et al. (2006). The approach described in this
paper as well as the Guenther approach comprise a feedfor-
ward and a feedback control path. Both approaches com-
prise self-organizing networks for processing neural states
and comprise neural maps for storing phonemic, motor,
and sensory states representing speech items. Both
approaches introduce pre-linguistic and early linguistic lan-
guage-specific training (i.e. babbling and imitation training,
see below) in order to shape the neural mappings within the
computational models and both approaches include the
concept of a mental syllabary (Levelt and Wheeldon,
1994; Levelt et al., 1999) and basic ideas of the mirror neu-
ron concept (Fadiga and Craighero, 2004; Rizzolatti and
Craighero, 2004) since both approaches claim a simulta-
neously occurring activation of sensory and motor states
for speech items.

But there are three major differences between both
approaches. Firstly, the DIVA approach does not separate

motor planning and motor execution as is introduced here.
This separation results from the fact that for all types of
voluntary movements (actions) just the goal of an action
(e.g. grasping a definite object or pressing a sequence of
buttons) and the temporal overlap or temporal sequencing
of actions are determined on the planning level while the
details of movement execution are determined on lower

neural levels (Kandel et al., 2000; Kröger et al., 2008). In
the case of speech production vocal tract action units or
speech gestures are well established as basic units of speech
production (Browman and Goldstein, 1989, 1992; Gold-
stein et al., 2006, 2007) separating motor speech planning
– i.e. the level of action scores (Goldstein et al., 2006) –
and motor speech execution (Saltzman and Munhall,
1989; Goldstein et al., 2006) – i.e. the detailed determina-
tion of all articulator movements. The practical importance
of dynamically defined speech action units becomes appar-
ent if modeling of segmental reduction effects resulting
from high speech rate (Kröger, 1993) or if modeling of
speech errors (Goldstein et al., 2007) is attempted. Sec-
ondly, the DIVA model does not explicitly introduce a pho-
netic map or at least a map, reflecting the self-organization
of speech items between sensory, motor, and phonemic rep-
resentation; and the DIVA model does not explicitly claim
bidirectional mappings between phonemic, sensory, and
motor representations. But the assumption of bidirectional
associations is essential in our production–perception
model. Production is modeled in our approach using neural
connections from the phonemic map directed towards the
motor and sensory maps via the phonetic map and percep-
tion is modeled in our approach using the neural connec-
tions from sensory maps directed toward phonemic map
via the phonetic map. Furthermore, the phonetic map itself
is a central concept in our approach. On the one hand, the
phonetic map introduces a hypermodal description of
speech items which connects the sensory and motor repre-
sentations of a speech item as is claimed in the mirror neu-
ron theory. Our simulation results indicate that it is very
feasible to introduce this level of neural self-organization
(phonetic map) since it elucidates the ordering of speech
items with respect to phonetic features (phonetotopy, see
below). Furthermore the notion of the phonetic map is
important for modeling speech perception since perceptual
discrimination is defined in our approach as a distance
between activated states on this neural level (see below).
Thirdly, the DIVA model is a production model not aiming
for modeling speech perception. But according to the argu-
ments given above the modeling of speech production and
speech perception as two closely related processes is of
great importance. This is achieved in our approach.

3. Gaining speech knowledge: training stages for speech

acquisition

Speech knowledge is gained during training stages which
model basic stages of human speech acquisition. This knowl-
edge is stored within the mappings of the model, i.e. by the
link weight values connecting the neurons within the pro-
duction–perception model. Link weight values are adjusted
during training stages. Two basic training stages can be dif-
ferentiated, i.e. the babbling and the imitation stage (Oller
et al., 1999).

For babbling training the training sets comprise pre-lin-
guistic speech items, i.e. proto-vocalic and proto-syllabic

Fig. 3. Self-organizing network connecting three neural maps (side layer
maps) by a central self-organizing map (SOM or central layer map). Black
lines indicate the neural connections, connecting each neuron of each side
layer map with each neuron of the central map.
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speech items. The model randomly produces proto-vocalic
and proto-syllabic speech items and listens to its own pro-
ductions using the auditory feedback path (Fig. 1). The link
weights between the sensory maps and the motor plan map
are adjusted via the phonetic map during this training
stage. No phonemic activation occurs since these training
items are pre-linguistic. The knowledge which is gained
during babbling training is language independent general

phonetic knowledge. During this training stage the neuro-
computational model learns the sensorimotor interrelation-

ship of the vocal tract apparatus and its neural control, i.e.
the interrelationship between various motor plan states and
their resulting somatosensory and auditory states. The bab-
bling training can be subdivided into training stages for
training of proto-vocalic states and for proto-syllabic
CV- and VC-states.

The proto-vocalic babbling training set comprises a set of
proto-vocalic states which exhibit a quasi-continuous varia-
tion of the vocalic motor plan parameters low–high and
front–back. The training set used here comprises 1076
proto-vocalic states which cover the language independent
articulatory vowel space between the cardinal vowel quali-
ties [i], [a], and [u] (Fig. 4). Each proto-vocalic motor plan
state is defined by the vocalic parameters back–front and
low–high. Thus the proto-vocalic training stimuli form a
two-dimensional plane within the F1–F2–F3 acoustic vowel
space (Fig. 4). Other motor parameters like tongue body
height, tongue body horizontal and vertical position, and
like lip opening are functions of these two motor plan param-
eters (Kröger et al., 2006c). Even lip protrusion is a function
of the parameter front–back in the case of this preliminary
training set since the training set does not include rounded
front proto-vowels (e.g. [y]-like vowel qualities).

The proto-syllabic CV and VC babbling training sets are
based on a set of 31 proto-vocalic motor plan states which
are characterized by the motor plan parameters back–front
and low–high and which are covering the whole articula-
tory vowel space. Labial, apical, and dorsal opening and
closing gestures (proto-CV- or proto-VC-gestures) starting
or ending with a full closure are superimposed on these
proto-vocalic states. Three proto-consonantal places of
articulation (front–mid–back) are defined per gesture. This
leads to a total amount of 279 training items for each of the
two proto-syllabic training sets (proto-CV- and proto-VC-
training set). The articulatory velocity of the gesture-exe-
cuting articulator for all closing and opening gestures is
proportional to the distance between actual articulator
position and gestural target position. This leads to an expo-
nential time function for the displacement of this articula-
tor. A gesture is ending if the articulator-target distance is
below 10% in the case of opening or proto-CV-gestures or
if a full closure is reached in the case of closing or proto-
VC-gestures (target of closing gestures is beyond the full
closure position). In summary the motor plan state for
these proto-CV- and proto-VC-gestures is defined by (i)
two vocalic parameters (back–front and low–high), by (ii)
the gesture-performing articulator (labial, apical, or dorsal)

and by (iii) the exact proto-consonantal closing position
(front–mid–back). The lower level (or primary) motor
parameters and their time courses are calculated from these
motor plan parameters by the motor execution module.
The appropriate auditory state of these opening and clos-
ing gestures (proto-CV- and proto-VC-syllables) is the time
courses of the first three formants F1, F2, and F3 (Fig. 5
and see Section 2) and the appropriate somatosensory state
for each proto-syllabic motor plan state comprises tactile
information of the proto-consonantal closure and proprio-
ceptive information of the proto-vocalic opening.

Proto-vocalic, proto-CV-syllabic, and proto-VC-syllabic
babbling training is performed independently from each

Fig. 4. Position of all auditory patterns of the proto-vocalic training
stimuli (grey points) in the normalized and bark-scaled (a) F1–F2 and (b)
F1–F3 vowel space.
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other. Three self-organizing maps (size: M = 15 � 15 = 225
neurons) form three phonetic submaps and are trained by
using the three training sets described above. Training
leads to an adjustment of link weight values wij between
the N side layer neurons ai and the M central layer neurons
bj. The side layers consist of the motor plan map
(i = 1, . . . ,K) and the sensory (auditory and somatosen-
sory) maps (i = K + 1, . . . ,N) while the central layer repre-
sents the phonetic map (j = 1, . . . ,M). Link weight values
are initialized by random values within the interval [0, 1]
(i.e. no activation to full activation). The link weights
wij(tinit) are initialized using random values between 0 and
1 (Eq. (2)). This adjustment of the link weights is done
incrementally, i.e. step by step, using Hebbian learning
(Eq. (3)). When a new stimulus I with I = (x0, . . . ,xN) is
presented, the winner neuron bwinner is identified in the cen-
tral layer by calculating the minimum of Euclidian norm
between I and Wj, j = 1, . . . ,M; i.e. winner = arg minj

(kI �Wjk), where Wj is a vector containing the link weights
of all links from the central layer neuron bj to the side layer
neurons ai, i.e. Wj = (w1j, . . . ,wNj). Once the winner neuron
bwinner is identified the link weights for a step t with
tinit < t < tmax are updated as

wijðtinitÞ ¼ randð0; 1Þ ð2Þ
wijðt þ 1Þ ¼ wijðtÞ þ N winner;jðtÞ � LðtÞ � ðI i � wijðtÞÞ ð3Þ

where 0 < L(t) < 1 is a constantly decreasing learning fac-
tor defined as

LðtÞ ¼ 0:00001þ ðLinit � 0:00001Þ 1� t
tmax

� �
ð4Þ

and Nwinner,j(t) is a neighborhood kernel (see Eq. (5)). Only
the link weights of the neurons in the neighborhood around
the winner neuron are updated. A 1-neighborhood is
defined as all 8 neurons around the winner neuron, if they
exist. A (n + 1)-neighborhood contains all neurons of a
n-neighborhood and their 1-neighbors, if they exist. Thus
a neighborhood kernel Nwinner,j(t) is defined as

N winner;jðtÞ ¼
1 if bj 2 rðtÞ-neighborhood

0 if bj R rðtÞ-neighborhood

�
ð5Þ

with neighborhood radius of bwinner. The additional step
dependent function r(t) is introduced to get a constantly
decreasing neighborhood radius (see Eq. (6)).

rðtÞ ¼ 1:0þ ðrinit � 1:0Þ 1� t
tmax

� �
ð6Þ

For the babbling training an initial neighborhood radius
rinit = 12 and an initial learning rate Linit = 0.8 are chosen.

Proto-vocalic and proto-syllabic test sets were defined
for testing the proto-vocalic and proto-syllabic training
results. The proto-vocalic test set comprises 270 proto-
vocalic states which cover the language independent artic-
ulatory vowel space between the cardinal vowel qualities
[i], [a], and [u]. This proto-vocalic test set is organized in
the same way as the proto-vocalic training set but the test
set exhibits a much lower density within the articulatory or
auditory vowel space. This also results in different training
and test items. Both proto-syllabic test sets are based on a
set of 22 quasi-vocalic motor plan states covering the whole
language independent articulatory vowel space. Both
proto-syllabic test sets are organized in the same way as
the proto-syllabic training sets but the test sets exhibit a
lower density within the articulatory or auditory vowel
space for the proto-vocalic starting or ending positions of
the VC- or CV-proto-syllables. Both proto-syllabic test sets
comprise 198 items. The test items were different from the
training items defined above.

An estimation of the quality of the proto-vocalic and the
proto-syllabic training results is done by calculating a mean
error over all test set items for estimating an articulatory
state of a test set item from its auditory state. The calcula-
tion of the error value for each test item comprises six
steps: In a first step the motor plan state of a test item is
applied to the motor execution module for calculating the
appropriate articulatory patterns (i.e. the time course of
articulatory parameters for a speech item) by using the
feedforward part of the model. This calculated articulatory
pattern is called initial articulatory pattern. In a second step
the appropriate auditory state pattern is calculated by
using the output of the three-dimensional articulatory–
acoustic model for the initial articulatory pattern and by

Fig. 5. Auditory state (right side) for a dorsal closing gesture (left side).
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applying this output to the auditory feedback pathway of
the model. In a third step the motor plan state is recalcu-
lated from the auditory state pattern calculated in the sec-
ond step. Note that the trained self-organizing network is
used for this step. This step leads to an estimated motor

plan state which results from the sensorimotor knowledge
stored within the self-organizing network, i.e. which results
from the learning or training procedure. In a fourth step
the estimated articulatory pattern is calculated for the esti-
mated motor plan states by reusing the feedforward part of
the model. In a fifth step the estimated and initial articula-
tory patterns are compared. An error value is calculated for
each test item which is the difference between estimated and
initial articulatory pattern. This difference is normalized
with respect to the initial articulatory pattern. In a sixth
step the mean error over all test set items is calculated
for the trained network.

500,000 training steps are sufficient for predicting asso-
ciated articulatory states from the auditory states of the
test items with a precision below 2% error rate on the pri-
mary motor level in the case of the proto-vocalic training
(using the proto-vocalic training set) and 280,000 training
steps are sufficient for predicting the articulatory states
from the auditory states with a precision below 5% error
rate in the case of both proto-syllabic trainings (using both
proto-syllabic training sets). Thus the complete babbling
training requires less than five minutes on standard PC’s.

The resulting link weight values for the neurons con-
necting the self-organizing phonetic maps with the motor
plan and auditory map are graphically displayed for the

proto-vocalic training in Fig. 6 and for the proto-CV-syl-
labic training in Fig. 7. It appears that motor plan states
are organized with respect to phonetic categories. In the
case of the vocalic phonetic submap vocalic states are
ordered continuously with respect to the motor plan
parameters high–low and front–back. Experimental evi-
dence for this kind of ordering is given by Obleser et al.
(2006). In the case of the syllabic submap three regions
occur which represent the gesture-performing articulator
(labial, apical, and dorsal), i.e. an ordering occurs with
respect to the motor-plan parameter gesture-performing
articulator. This neural behavior resulting from self-organi-
zation of vocalic and consonantal or syllabic states with
respect to phonetic categories (high–low, front–back, ges-
ture-performing articulator) can be labeled as phonetotopy

in parallel to tonotopy for the cortical ordering of auditory
states with respect to their fundamental frequency (Kandel
et al., 2000, p. 609) or in parallel to somatotopy for the
ordering of somatosensory states with respect to their loca-
tion on the body surface (Kandel et al., 2000, p. 460f).

It should be kept in mind at this point that the general
phonetic sensorimotor knowledge stored in these phonetic
maps is knowledge of sensorimotor relations exclusively
generated by the three-dimensional articulatory and acous-
tic vocal tract model. Thus it is important for the perfor-
mance or quality of neurocomputational models of
speech production and perception that these models com-
prise realistic articulatory and acoustic vocal tract models
as front–end modules which are capable of generating
high-quality articulatory and acoustic signals, since the sig-

Fig. 6. Motor plan and auditory link weight values after vocalic babbling and imitation training for each neuron within the vocalic phonetic map (15 � 15
neurons). Link weight values are given for two motor plan parameters within each neuron box: back–front (left bar) and low–high (right bar). Link weight
values are given for three auditory parameters: bark scaled F1, F2, and F3 (horizontal lines within each neuron box). The outlined boxes indicate the
association of neurons with vowel phoneme categories. These associations are established during imitation training (see text).
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nals generated by the articulatory–acoustic model are the
basis for the calculation of all sensory signals.

After babbling training the neurocomputational model
is capable of reproducing (or imitating) the motor plan
state (i.e. the articulation) of any pre-linguistic speech item
– in our case of any proto-vowel, proto-CV-syllable and
proto-VC-syllable (with C = proto-consonantal closing
gestures) – from their acoustic (or auditory) state patterns.
Thus the neurocomputational model is now ready for lan-
guage-specific imitation training. For imitation training the
training sets comprise language-specific speech items; in our
case vocalic and syllabic speech items. Beside the adjust-
ment of link weights of the mapping between the phonetic
map and the sensory maps and of the mapping between the
phonetic map and the motor plan map, which is mainly
done during babbling training, now in addition the link
weights of the mapping between the phonetic map and
the phonemic map are adjusted. Language-specific imita-
tion training results in (i) specifying regions of typical pho-

neme realizations (phone regions) within the phonetic map,
i.e. in specifying regions of neurons within the phonetic
map, which represent typical realizations of a phoneme
or of a syllable phoneme chain (see Figs. 6 and 7) and in
(ii) fine-tuning of the sensorimotor link weights already
trained during babbling. This fine-tuning mainly occurs
at the phone regions. Thus the knowledge which is gained
during imitation is language dependent. In other words

during this training stage the neurocomputational model
mainly learns to link neurons which represent different
phonemes or phonemic descriptions of syllables with the
motor plan states and with the sensory states of their
appropriate typical realizations. In parallel to babbling
training also imitation training can be subdivided into
training procedures for vowels, CV- and for VC-syllables.

The vowel imitation training set comprises a set of 100
acoustic vowel realizations per phoneme for a typical five
vowel phoneme system /i/, /e/, /a/, /o/, and /u/ (e.g. Brad-
low, 1995 and Cervera et al., 2001). A three-dimensional
Gaussian distribution was chosen for each phoneme for
distributing the 100 realizations per phoneme over the
F1–F2–F3-space (Fig. 8 for the F1–F2-space). The distri-
bution of the phoneme realizations in the acoustic vowel
space (F1–F2–F3-space) is chosen as realistically as possi-
ble. The acoustic vowel realizations within the acoustic
vowel space slightly overlap. These 500 vowel realizations
are supposed to be realizations given by different external
speakers, but matched with respect to the models babbling
vowel space. It should be noted that vowel phonemes nor-
mally are learned in the context of words during speech
acquisition. This is replaced in this model by training of
isolated vowels by reason of simplicity. More complex
training scenarios are beyond the scope of this paper.

During vowel imitation training each external acoustic
(or auditory) vowel item is processed by the proto-vocalic

Fig. 7. Motor plan and auditory link weight values after CV-syllabic babbling and imitation training for each neuron within the CV-phonetic map
(15 � 15 neurons). Link weight values are given for five motor plan parameters within each neuron box. First three columns: vocal tract organ which
performs the closing gesture (labial, apical, dorsal); two last columns: back–front value (forth column) and low–high value (fifth column) of the vowel
within the CV-sequence. Link weight values are given for three auditory parameters: bark scaled F1, F2, and F3 (formant transitions within each neuron
box). The outlined boxes indicate the association of neurons with consonant phoneme categories /b/, /d/, and /g/; each of these three regions comprises the
appropriate consonant in all vocalic contexts. These associations are established during imitation training (see text).
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babbling network in order to estimate the appropriate
motor plan parameters. Thus the model is capable of re-
articulating (imitating) these externally produced vowels
and the model is capable of generating the appropriate
internal auditory feedback states. In natural human speech
acquisition scenarios the imitated vowel item is then judged
as right or wrong (i.e. is accepted or not accepted) by an
external listener; i.e. the produced item is awarded or not
by the external listener, e.g. by communication between
carer and toddler. If the item is accepted as a proper real-
ization of the intended phoneme, its motor and sensory
states can be linked to the neuron representing this pho-
neme in the phonemic map. In the case of our model all

realizations (re-articulations or imitations) can be accepted
and thus can be added to the imitation training data set
since the acoustic realizations of all re-articulations (or imi-
tations) occur within the phoneme realization clouds
(Fig. 8). Thus the vocalic imitation training set comprises
500 items of appropriate phonemic, motor plan, and sen-
sory states. These data are the basis for imitation training.

The syllable CV and VC imitation training sets are based
on a set of a labial, apical, and dorsal closing and opening
gesture ending or starting at 31 different vowel realizations
per vowel phoneme. That leads to 31 acoustic realizations
for each of the phonemic CV- or VC-syllables (i.e. /bi/,
/di/, /gi/, /be/, /de/, /ge/, /ba/, /da, /ga/, /bo/, /do/, /go/,
/bu/, /du/, and /gu/) and results in 465 training items. Each
of these externally produced acoustic items are imitated in
the same way as described above for the vowel items. Thus
465 training items of appropriate phonemic, motor plan,
and sensory states for CV- or VC-stimuli are generated.

Only 5,000 training steps for vowels and only 5,000
training steps for CV- and VC-syllables had to be added
to the proto-vocalic and proto-syllabic babbling training
for obtaining clear phoneme realization regions (phone
regions) within the phonetic maps (see the outlined neuron
boxes in Figs. 6 and 7). A neuron of the phonetic map is
defined to be a part of a phone region if the phonemic link
weight value for this neuron of the phonetic map and the
appropriate neuron of the phonemic map is above the level
of 0.95. Thus for the neurons which form a phone region
within the phonetic map, strong excitatory connections
exist towards the neuron representing the appropriate pho-
neme within the phonemic map.

For imitation training the imitation training sets are
used in addition to the ongoing applied babbling training
set. The network is not reset; the already trained babbling
network is used as a basis for further training. The algo-
rithms for adjusting the network link weight are identical
for babbling and for imitation training. Thus the succes-
sion from babbling to imitation training needs not to be
abrupt. Imitation training can start in parallel to babbling
training if some sensorimotor knowledge, i.e. if some
knowledge how to estimate motor plan states from audi-
tory states, is already available from early babbling train-
ing. The complete imitation training requires less than
one minute on a standard PC for the training sets used
here.

4. Producing and perceiving vowels and CV-syllables

It should be emphasized that babbling and imitation
training is not only the basis for learning to produce speech
items of a target language. Since the sensory states of all
self-productions are perceived by the feedback loop during
babbling training and since external acoustic speech items
as well as self-productions are perceived during imitation
training it can be hypothesized that babbling and imitation
training are also important for learning to perceive speech
items of a target language.

Fig. 8. Positions of all auditory patterns of the language-specific vocalic
training stimuli (phone clouds: 100 realizations per phoneme /i/ (square),
/e/ (cross), /a/ (circle), /o/ (triangle), and /u/ (plus)) in the normalized and
bark-scaled (a) F1–F2 and (b) F1–F3 vowel space. The patterns (or phone
clouds) are added to the proto-vocalic training stimuli (points).
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The production pathway (phonemic map ? phonetic
map ? motor plan map ? primary motor map ? articu-
lation) has been introduced in Section 2. The speech items
which were trained in this study can be labeled as frequent
syllables. The description of the processing of infrequent
syllables is beyond the scope of this paper. Our training
results given above indicate strong neural connections from
a phonemic state within the phonemic map to a set of neu-
rons within the phonetic map. Each of these sets of neurons
within the phonetic map represent a region of phoneme
realizations (phone regions) and thus represent production

variability since neighboring neurons within the phonetic
map represent slightly different motor and sensory states
(for natural variation in vowel realizations, see Perkell
et al., 1993). If a phonemic speech item is activated (phone-
mic map) this leads to an activation of several neurons
within the phonetic map (see the outlined boxes or phone
regions for example for the vocalic phonetic map; Fig. 6).
Thus in our model the maximal activated neuron within
the phonetic map can differ from realization to realization.
Therefore the motor plan and the subsequent articulatory
realization of a phonemic item are allowed to vary within
a perceptually acceptable region. These regions for phone-
mic items are the phoneme realization regions or phone
regions and they are language-specific and are defined dur-
ing imitation training (see Figs. 6 and 7).

Furthermore coarticulation is introduced in our neuro-
computational model. Two sources of coarticulation are
implemented in our model. Firstly, coarticulation results
from the fact that the exact coordination of articulators
for executing a speech gesture is controlled by the motor
execution module and that a speech gesture is not encoded
in all details on the motor plan level. That leads to variabil-
ity in gesture execution with respect to context. For exam-
ple the realization of /b/ in /ibi/ or /aba/ is different in our
model. In /aba/ the lower jaw is more involved in the exe-
cution of the labial closing gesture than in /ibi/ because of
the wide mouth opening occurring in /a/ in comparison to
/i/. Because of this wide mouth opening in /a/ it would be
ineffective to execute the closing gesture in /aba/ just by
using the lips. It is more effective to add a synergetic eleva-
tion of the lower jaw. Thus, the lower jaw elevation and the
lower lip elevation form a labial closing gesture in a syner-

getic way. Secondly, coarticulation results from the fact
that gesture specifications can vary even on the level of
the motor plan. For example lip protrusion is allowed to
vary for a consonantal labial closing gesture since lip pro-
trusion is a non-relevant phonemic feature in the case of a
labial closing gesture in our target language. Since the
labial closing gesture within a CV-syllable temporarily
overlaps with the following vocalic gesture (e.g. for a
gesture for realizing an /i/ or /u/) our simulations show
anticipatory lip protrusion on the motor execution level
in /pu/ while lips are not protruded during the labial
closure in /pi/.

In the case of language-specific perception of speech
items it can easily be shown that the neurocomputational

model trained thus far for vowels and simple CV- and
VC-syllables is capable of producing categorical perception

for vowels and in an even stronger way for consonants (i.e.
voiced plosives in the case of our model). The auditory

pathway for perception of external speech items (auditory
receptors ? auditory map ? phonetic map ? phonemic
map) has already been introduced in Section 2 (auditory-
to-motor pathway, see Hickok and Poeppel, 2000, 2004).
Thus the phonetic map is not only a central neural repre-
sentation in speech production but also in speech percep-
tion at least for sublexical speech units like speech sounds
and syllables. In order to show that the current neuron-
computational production–perception model perceives
vowels (for the five vowel system /i/, /e/, /a/, /o/, and /u/)
and consonants (for the voiced plosives /b/, /d/, and /g/)
in a speech-like categorical way, speech identification and
discrimination experiments were carried out using the
model. In order to be able to perform these experiments
using the model, 20 different instances of the model were
trained using (i) different sets of training data due to differ-
ent randomization procedures for determining the vocalic
items within all training sets, using (ii) a different ordering
of training stimuli during each training stage, and using (iii)
different sets of randomly generated initial link weight val-
ues for each of the 20 instances. The resulting 20 instances
of the model are called virtual listeners.

Identification of an external acoustic stimulus is per-
formed in our model by a virtual listener by identifying
the most excited neuron within the phonemic map. Dis-
crimination of two external acoustic stimuli is performed
in our model by calculating the most activated neuron on
the level of the phonetic map for each acoustic stimulus
and subsequently by calculating the city block distance
between these both neurons for each virtual listener. The
phonetotopic ordering of speech items on the level of the
phonetic map (see above) is a first hint that distance
between speech items (states) on the level of this map indi-
cates phonetic similarity or dissimilarity. Moreover we
assume that the sensory resolution of two states (i.e. the
capability for discrimination between these states) is gov-
erned by the spatial distance of these two states on the level
of the phonetic map. This assumption holds for tonotopic
ordering and thus for F0-discrimination of auditory stimuli
(see the discussion of tonotopic cortical maps, Kandel
et al., 2000, p. 609) and this assumption also holds for
somatotopic ordering and thus for the spatial discrimina-
tion of tactile stimuli (see the discussion of somatotopic
maps, Kandel et al., 2000, p. 460ff). Consequently it can
be hypothesized that two stimuli can be discriminated if
the distance of the activated neurons representing the stim-
uli on the level of the phonetic map exceeds a certain neu-
ron distance within this map and it can be hypothesized
that discrimination becomes stronger with increasing neu-
ron distance.

Vocalic and consonantal identification and discrimina-
tion tests were performed on the basis of quasi-continuous

acoustic stimulus continua (for an introduction to speech
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perception experiments, see e.g. Raphael et al. (2007)). The
stimulus continua generated for these tests model an /i/-
/e/-/a/-continuum for vowels and a /ba/-/da/-/ga/-contin-
uum for CV-syllables (Figs. 9 and 10). The resulting iden-
tification and discrimination scores are given in Figs. 11
and 12. It can be seen that the measured identification
scores (measured for the 20 virtual listeners by identifying
the most excited neuron within the phonemic map via the
phonetic map for each stimulus) indicate more abrupt pho-
neme boundaries in the case of consonants than in the case
of the vowels. Additionally it can be seen that the measured
discrimination scores (measured for the same 20 virtual lis-
teners by estimating the distance for both stimuli on the
level of the phonetic map; see above) indicate higher dis-
crimination scores at least for consonant perception. Beside
measured discrimination (naturally perceived discrimina-
tion) also calculated discrimination scores are shown in
Figs. 11 and 12. Calculated discrimination scores are theo-
retical constructs (see Liberman et al., 1957). They are cal-
culated from (measured) identification scores for each
single (virtual) listener. Thus calculated discrimination is
a discrimination of stimuli which merely results from
differences in identification of these stimuli. The probability
pdiscr for a certain percentage of calculated discrimination
of two stimuli a and b is based just on the identification
probabilities pid of these two stimuli for each phonemic cat-
egory i = 1, 2, or 3 (with 1 = /b/, 2 = /d/, and 3 = /g/ in
case of consonants and with 1 = /i/, 2 = /e/, and 3 = /a/
in the case of vowels, see Eq. (7) and Liberman et al.,
1957, p. 363).

pdiscr ¼ 0:5þ 0:5 �
X3

i¼1

ðpidða; iÞ � pidðb; iÞÞ
2 ð7Þ

Consequently calculated discrimination just indicates that
part of discrimination of stimuli which results from the
ability of subjects to classify stimuli to different categories.
Calculated discrimination or discrimination based on identi-

fication (Liberman et al., 1957; Eimas, 1963) and its differ-
ence to (naturally) measured discrimination is discussed as
an important feature of categorical perception (Damper

and Harnad, 2000). Calculated discrimination indicates
discrimination which is just based on discrete linguistic or
phonemic categorical knowledge, while measured discrimi-

Fig. 9. Bark-scaled formant pattern for 13 vocalic stimuli (/i/-/e/-/a/-continuum) for the vocalic perceptual identification and discrimination tests.

Fig. 10. Bark-scaled formant pattern for 13 CV-stimuli (/ba/-/da/-/ga/-continuum) for the consonantal perceptual identification and discrimination tests.

Fig. 11. Measured identification scores (non-bold black lines) and
measured (bold black line) and calculated (bold grey line) discrimination
score for the vocalic /i/-/e/-/a/ stimulus continuum for 20 virtual instances
of the model.

Fig. 12. Measured identification scores (non-bold black lines) and
measured (bold black line) and calculated (bold grey line) discrimination
scores for the consonantal /ba/-/da/-/ga/ stimulus continuum for 20
virtual instances of the model.
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nation scores indicate the complete discrimination of two
stimuli based on all available auditory information given
by these stimuli; not just the linguistic, phonemic, or cate-
gorical information, needed for (categorical) identification.
It can be seen from Figs. 11 and 12 that measured discrim-
ination rates are always higher than calculated discrimina-
tion rates. That is in agreement with identification and
discrimination scores extracted from identification and dis-
crimination experiments carried out with humans and can
be interpreted in the way that acoustic speech stimuli al-
ways convey categorical (linguistic) and non-categorical
(para-linguistic or non-linguistic extra) information. While
measured and calculated discrimination scores are nearly
identical in the case of consonants, it comes out from our
modeling data that measured discrimination is better than
calculated discrimination especially in the case of vowels.
This is in agreement with result of natural speech percep-
tion (Fry et al., 1962; Eimas, 1963) and reflects the typical
differences in categorical perception of consonants and
vowels.

5. Discussion and conclusions

The experimental results presented in this paper indicate
that a model of speech production and perception which is
shaped with respect to basic neurophysiological facts is
capable of embedding important features of speech pro-
duction and speech perception in a straight forward way
even if the neurocomputational modeling is relatively basic
as is here by using simple standard self-organizing net-
works. Typical and therefore important features of speech
production and perception like production variability of
phoneme realizations and categorical speech perception
and especially the fact of different degrees of categorical
perception for consonants and vowels, occur in a straight-
forward way in this production–perception model. Since
human speech production and perception easily outper-
forms speech synthesis and speech recognition systems at
least in difficult conditions, it could be useful to include
human-like speech processing routines into such technical
speech processing systems. This may help to increase the
quality and the level of performance of technical speech
processing systems.

Furthermore this modeling study indicates the close
relationship of speech production and speech perception.
Speech perception theories such as the motor theory of
speech perception (Liberman et al., 1967; Liberman and
Mattingly, 1985) or the direct-realist theory (Fowler,
1986) have already postulated this close relationship. And
recent experimental results provide support for this claim
and suggest that the development of an integrative model
on speech production and perception is highly desirable.
For example perceptual feedback loops (also called self-
monitoring processes) are known to activate parts of the
speech perception mechanism during overt (external per-
ceptual loop) as well as covert speech production (internal
perceptual loop, cf. Indefrey and Levelt, 2004; Postma,

2000; Hartsuiker and Kolk, 2001). In addition imaging
studies focusing on speech perception have demonstrated
that perception is capable of activating parts of the speech
production cortical networks (Fadiga et al., 2002; Wilson
et al., 2004; Hickok and Poeppel, 2004, 2007).

Bidirectional mappings between phonemic and phonetic
and between sensory and phonetic maps are introduced in
our neural model in order to illustrate the close relation-
ship between production and perception. The introduction
of these bidirectional mappings is the basis for important
features of the model like categorical perception. Physio-
logically a bidirectional mapping comprises two related
unidirectional mappings since neurons always forward
their firing pulses in one direction (Kandel et al., 2000).
Thus physiologically bidirectional mappings are repre-
sented by two neural paths connecting the maps in both
directions (see the separate arrows in Fig. 1). The pho-
netic map – which forms the central map for all bidirec-
tional mappings in our model (see Fig. 1) can be
interpreted as the central part of the mental syllabary
(Levelt and Wheeldon, 1994; Levelt et al., 1999). Neural
cortico-cortical connections exist in both directions
between this part of the frontal cortex and the sensory
areas as well as between this part of the frontal cortex
and those temporal regions which process phonemic
information (Kandel et al., 2000).

Other computer-implemented models of speech produc-
tion (Bailly, 1997; Guenther, 1994, 1995, 2006; Guenther
et al., 2006) as well as the model introduced here reflect
the relationship between perception and production by
incorporating perceptual feedback control loops or by incor-
porating production–perception pathways for self-moni-
toring processes (Indefrey and Levelt, 2004). Dual stream

models of speech perception have recently been published
which introduce a ventral stream for passive auditory pro-
cessing and a dorsal stream activating auditory-motor net-
works (e.g. Hickok and Poeppel, 2004, 2007) but passive
models of speech perception that do not refer to produc-
tion processes can also be found (McClelland and Elman,
1986; Gaskell and Marslen-Wilson, 1997; Luce et al.,
2000; Norris et al., 2006). The model introduced here
reflects the close relationship between speech production
and speech perception since on the one hand our model
comprises basic features of speech production models (cf.
Guenther et al., 2006) and since on the other hand our
model is capable of incorporating in addition the dual
stream idea (Hickok and Poeppel, 2007) in a straight for-
ward way (see the labels ‘‘ventral stream” and ‘‘dorsal
stream” in Fig. 1).

Mirror neurons (visual and audio–visual mirror neuron
system) appear to be one of the neural systems that are
involved in the association of production and perception
processes (Rizzolatti and Arbib, 1998; Studdert-Kennedy,
2002; Kohler et al., 2002; Fadiga and Craighero, 2004; Riz-
zolatti and Craighero, 2004; Wilson et al., 2004; Iacoboni,
2005; Wilson and Knoblich, 2005; Arbib, 2005). Systems of
mirror neurons have been detected which code the abstract
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meaning of goal-directed actions (e.g. grasping) and which
are capable of co-activating motor and sensory (visual and
audio–visual) representations of these actions by neural
cortico-cortical associations. These visual and audio–visual
mirror neuron systems also co-activate abstract concepts
(preferably for action words) and thus are capable of asso-
ciating higher order linguistic representations with goal-
directed actions. A speech mirror neuron system (‘‘mirror
resonant system” after Fadiga and Craighero, 2004, p.
167, ‘‘auditory mirror neuron system” or ‘‘echo neurons”

after Rizzolatti and Craighero, 2004, p. 185f) is postulated
which is newer from the viewpoint of evolution in compar-
ison to the mirror neuron system introduced above and
which is directly linked with the capacity of humans to
learn speech items by imitation. It can be assumed that this
speech mirror neuron system in parallel co-activates motor
representations, sensory representations, and phonemic
representations of speech items. Given that from a pho-
netic viewpoint speech items also are built up by goal-direc-
ted actions (called speech gestures) which build-up the
motor plans for speech items in our model (see Section
2), it can be hypothesized that a mirror neuron layer also
exists for the association of motor, sensory, and phonemic
representations of speech gestures (see also Westerman and
Miranda, 2004).

Self-organization is a central principle of learning and
self-organizing maps are used for modeling cortical net-
works (Kohonen, 2001). Within our neurocomputational
model artificial self-organizing neural networks are imple-
mented since self-organizing neural networks are biologi-
cally plausible and have been used successfully for
modeling semantic lexical networks (Ritter and Kohonen,
1989), for (i) modeling semantic and phonological aspects
during early lexical development (Li et al., 2004), and for
(ii) modeling the generation and recognition of goal-direc-
ted movements (Bullock et al., 1993; Tani et al., 2004). A
further argument for using self-organizing maps is their
success in modeling the mapping between phonemic and
phonetic aspects of speech production as demonstrated
by the learning experiments for vowels and syllables
described in this study.

In our current model different submaps are used for dif-
ferent classes of speech items (V, CV, VC) and separate
training procedures were introduced for training these clas-
ses of speech items. This separation of the phonetic map in
submaps as well as the separation of training procedures
for different speech items was done in order to simplify
the modeling of the speech acquisition procedure for these
three classes of speech items from the computational view-
point. But in principle all types of speech items (i.e. all
types of syllables and words or word components) can be
trained simultaneously by introducing just one comprehen-
sive learning task and by using one single phonetic map.
Recent preliminary experiments indicate that a comprehen-
sive single phonetic map shapes different subregions repre-
senting different classes of speech items. The ordering of
speech items within these subregions is similar to the pho-

netotopic ordering presented in this paper for the different
submaps discussed here.

It is unclear whether the training sets used here consti-
tute a representative natural model of babbling and imita-
tion training during early states of human speech
acquisition. Our training sets comprise a widespread set
of vocalic vocal tract positions and a widespread set of
opening and closing movements. At least these sets com-
prise all vocal tract positions and all opening and closing
movements which are physiologically possible. But it is
conceivable that toddlers very quickly reduce their set of
training items from all physiological possible positions
and movements towards a subset of positions and move-
ments which are especially important for speech.

It should be noted that our neural modeling approach
does not include modeling of temporal aspects of neural
functioning. Rather the temporal aspects of production
and perception are included in the speech items and thus
in the sensory, motor, phonetic, and phonemic states. In
our production–perception model sensory and motor states
of vowels and syllables are processed as a whole. Our mod-
eling approach thus is sufficient as long as only a descrip-
tion of the training and processing of syllables is wanted.
In contrast a detailed temporal organization becomes
important if speech items comprise more than one syllable.
In this case processing delays must be introduced for all
pathways postulated in the model (cf. Guenther et al.,
2006) and temporal aspects of neural activity need to be
considered (cf. Maass and Schmitt, 1999).

The two training stages identified by our modeling study
distinguish between babbling (i.e. the build-up stage for
sensorimotor representations of pre-linguistic proto-voca-
lic and proto-consonantal speech gestures) and imitation

(i.e. the build-up stage for language-specific perceptual,
motor, phonetic, and phonemic representations of speech
items). A closer modeling of early stages of speech acquisi-
tion (Oller et al., 1999) is beyond the scope of this paper.
Furthermore in reality the two training stages introduced
here overlap in time. This is partially realized in our
approach, since babbling and imitation training items are
applied in parallel during the imitation training stage after
a short babbling training stage.

The next important step would be to introduce processes
for building up the mental lexicon and for modeling the
process of word segmentation and identification (cf. Batch-
elder, 2002; Werker and Yeung, 2005; Jusczyk, 1999; Brent,
1999). The representation of the mental lexicon of the tar-
get language is very important for including top-down pro-
cesses of speech perception and thus for speech recognition.
However consideration of these processes currently goes
beyond the scope of the current implementation of our
model. But the model in generally is open for integrating
a mental lexicon.

Last but not least it has to be stated that the neurocom-
putational production–perception model developed thus
far by no means is an alternative solution for high-perfor-
mance speech recognition or speech synthesis systems. At
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present the model described here is capable of producing
and perceiving simple CV- and VC-syllables under ideal
conditions. Concerning a further development of the model
introduced here two different strategies are imaginable. On
the one hand, this model can be further developed in order
to handle more complex classes of speech items (words,
sentences, or a whole discourse) under ideal and non-ideal
conditions (e.g. different speakers, different emotional
states, external noise). On the other hand, the organization
of the neurocomputational model outlined in this paper
could be integrated at least partially into the architecture
of current or new speech recognition and speech synthesis
systems.
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